On Wednesday, 18 February 2015 at 15:15:21 UTC, Russel Winder wrote:
It strikes me that D really ought to be able to work with GPGPU – is there already something and I just failed to notice. This is data parallelism but of a slightly different sort to that in std.parallelism. std.concurrent, std.parallelism, std.gpgpu ought to be harmonious
though.

The issue is to create a GPGPU kernel (usually C code with bizarre data structures and calling conventions) set it running and then pipe data in and collect data out – currently very slow but the next generation of Intel chips will fix this (*). And then there is the OpenCL/CUDA debate.

Personally I think OpenCL, for all it's deficiencies, as it is vendor neutral. CUDA binds you to NVIDIA. Anyway there is an NVIDIA back end for OpenCL. With a system like PyOpenCL, the infrastructure data and process handling is abstracted, but you still have to write the kernels in C. They really ought to do a Python DSL for that, but… So with D can we write D kernels and have them compiled and loaded using a combination
of CTFE, D → C translation, C ompiler call, and other magic?

Is this a GSoC 2015 type thing?


(*) It will be interesting to see how NVIDIA responds to the tack Intel
are taking on GPGPU and main memory access.

It would be great if LDC could do this using https://www.khronos.org/spir

Reply via email to