Hello Guys,
I am asking a basic 101 question but the thing is we have trained the 
`faster_rcnn_resnet50_v1b` 2 times on different objects and now my basic code 
looks like this:

    from gluoncv import model_zoo, data, utils
    from matplotlib import pyplot as plt
    net = model_zoo.get_model('faster_rcnn_resnet50_v1b_voc', pretrained=True, 
ctx=mx.gpu())
    im_fname = 
'/home/ubuntu/notebooks/deeplearning_stuff/VOCtemplate/VOC2018/JPEGImages/200425094324_328899_6548_4326.jpg'
    x, img = data.transforms.presets.rcnn.load_test(im_fname, short=512)
    x = x.copyto(mx.gpu())

    print('Shape of pre-processed image:', x.shape)
    
net.load_parameters('/home/abc_object/faster_rcnn_resnet50_v1b_voc_best.params')
    
net.load_parameters('/home/xyz_weight/faster_rcnn_resnet50_v1b_voc_best.params')
    net.reset_class(['abc_object'], reuse_weights={'abc_object': 'abc_object'})

    class_IDs, scores, bounding_boxs = net(x)

I am having trouble in the net.load_parameters() how can I load two different 
set of trained weights and perform the prediction??





---
[Visit 
Topic](https://discuss.mxnet.io/t/best-way-to-use-multiple-trained-params-on-different-objects-together/6385/1)
 or reply to this email to respond.

You are receiving this because you enabled mailing list mode.

To unsubscribe from these emails, [click 
here](https://discuss.mxnet.io/email/unsubscribe/707f39585bf01dc4d3e29a4042402c5c3f271da9614c84568b3f1bbdb18f044a).

Reply via email to