I am trying to implement [task-specific weighting of multiple embeddings as in 
Elmo](https://arxiv.org/pdf/1802.05365.pdf).  
Currently, I initialized weights for multiple embeddings using 
`self.param.get`.  However, it throws me the error.
`AssertionError: Argument data must be Symbol instances, but got Parameter 
elmoembedding0_weights (shape=(3,), dtype=<class 'numpy.float32'>)`.

I can call `x.data()` for non hybridized or `x.var()` for hybridized version 
for the parameters.  Is there a way to simply apply Softmax to parameters and 
work with both versions?  Thanks!
  
My code looks something like this
```
import mxnet as mx
import mxnet.gluon as gluon

class ElmoEmbedding(gluon.HybridBlock):
    def __init__(self):
        super(ElmoEmbedding, self).__init__()

        with self.name_scope():
            self.weights = self.params.get('weights',
                                           shape=(3,),
                                           init=mx.init.Constant(1.0))
            self.scales = self.params.get('scales',
                                      shape=(1,0),
                                      init=mx.init.Constant(1.0))

    def hybrid_forward(self, F, x, *args, **kwargs):
        normalized_weights = F.softmax(self.weights)
        weighted_x = F.dot(normalized_weights, x)
        output = F.broadcast_mul(self.scales, weighted_x)
        return output

net = ElmoEmbedding()
net.hybridize()

# create input
x = mx.ndarray.random.randn(3,100)
output = net(x)
print("output", output.shape)
```





---
[Visit 
Topic](https://discuss.mxnet.apache.org/t/how-to-apply-f-softmax-to-gluon-parameters/6930/1)
 or reply to this email to respond.

You are receiving this because you enabled mailing list mode.

To unsubscribe from these emails, [click 
here](https://discuss.mxnet.apache.org/email/unsubscribe/97036f3ac6bc46f8d999282ce625d054f6fcc6ddb3d52b75e7e615d16c3d287d).

Reply via email to