cmpute opened a new issue, #18481:
URL: https://github.com/apache/tvm/issues/18481

   Thanks for participating in the TVM community! We use https://discuss.tvm.ai 
for any general usage questions and discussions. The issue tracker is used for 
actionable items such as feature proposals discussion, roadmaps, and bug 
tracking.  You are always welcomed to post on the forum first :smile_cat:
   
   Issues that are inactive for a period of time may get closed. We adopt this 
policy so that we won't lose track of actionable issues that may fall at the 
bottom of the pile. Feel free to reopen a new one if you feel there is an 
additional problem that needs attention when an old one gets closed.
   
   ### Documentation Title & Type
   
   [End-to-End Optimize 
Model](https://tvm.apache.org/docs/how_to/tutorials/e2e_opt_model.html)
   
   ### Additions/Changes Requested
   
   When runs the tutorial with the latest code, there are exceptions:
   
   ```log
   # Metadata omitted. Use show_meta=True in script() method to show it.
   
   Traceback (most recent call last):
     File "//workspace/test_tvm2.py", line 72, in <module>
       ex = tvm.compile(mod, target="cuda")
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/driver/build_module.py", line 
104, in compile
       return tvm.relax.build(
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/relax/vm_build.py", line 263, 
in build
       return _vmlink(
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/relax/vm_build.py", line 158, 
in _vmlink
       lib = tvm.tir.build(tir_mod, target=target, pipeline=tir_pipeline)
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/tir/build.py", line 226, in 
build
       mod = pipeline(mod)
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/ir/transform.py", line 167, in 
__call__
       return _ffi_transform_api.RunPass(self, mod)
     File "python/tvm_ffi/cython/function.pxi", line 678, in 
core.Function.__call__
     File "<unknown>", line 0, in 
tvm::transform::Pass::operator()(tvm::IRModule) const
     File "<unknown>", line 0, in 
tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext 
const&) const
     File "<unknown>", line 0, in 
tvm::transform::ModulePassNode::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     File "<unknown>", line 0, in std::_Function_handler<tvm::IRModule 
(tvm::IRModule, tvm::transform::PassContext), 
tvm::transform::__TVMFFIStaticInitFunc4()::{lambda(tvm::ffi::TypedFunction<tvm::IRModule
 (tvm::ffi::RValueRef<tvm::IRModule, void>, tvm::transform::PassContext)>, 
tvm::transform::PassInfo)#1}::operator()(tvm::ffi::TypedFunction<tvm::IRModule 
(tvm::ffi::RValueRef<tvm::IRModule, void>, tvm::transform::PassContext)>, 
tvm::transform::PassInfo) const::{lambda(tvm::IRModule, 
tvm::transform::PassContext)#1}>::_M_invoke(std::_Any_data const&, 
tvm::IRModule&&, tvm::transform::PassContext&&)
     File "<unknown>", line 0, in 
tvm::transform::__TVMFFIStaticInitFunc4()::{lambda(tvm::ffi::TypedFunction<tvm::IRModule
 (tvm::ffi::RValueRef<tvm::IRModule, void>, tvm::transform::PassContext)>, 
tvm::transform::PassInfo)#1}::operator()(tvm::ffi::TypedFunction<tvm::IRModule 
(tvm::ffi::RValueRef<tvm::IRModule, void>, tvm::transform::PassContext)>, 
tvm::transform::PassInfo) const::{lambda(tvm::IRModule, 
tvm::transform::PassContext)#1}::operator()(tvm::IRModule, 
tvm::transform::PassContext) const
     File "python/tvm_ffi/cython/function.pxi", line 732, in 
core.tvm_ffi_callback
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/tir/pipeline.py", line 123, in 
_pipeline
       mod = tvm.ir.transform.Sequential(passes)(mod)
     File "/opt/mlc-llm/3rdparty/tvm/python/tvm/ir/transform.py", line 167, in 
__call__
       return _ffi_transform_api.RunPass(self, mod)
     File "python/tvm_ffi/cython/function.pxi", line 678, in 
core.Function.__call__
     File "<unknown>", line 0, in 
tvm::transform::Pass::operator()(tvm::IRModule) const
     File "<unknown>", line 0, in 
tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext 
const&) const
     File "<unknown>", line 0, in 
tvm::transform::SequentialNode::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     File "<unknown>", line 0, in 
tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext 
const&) const
     File "<unknown>", line 0, in 
tvm::transform::ModulePassNode::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     File "<unknown>", line 0, in std::_Function_handler<tvm::IRModule 
(tvm::IRModule, tvm::transform::PassContext), 
tvm::tir::transform::VerifyMemory()::{lambda(tvm::IRModule, 
tvm::transform::PassContext)#1}>::_M_invoke(std::_Any_data const&, 
tvm::IRModule&&, tvm::transform::PassContext&&)
     File "<unknown>", line 0, in 
tvm::tir::transform::VerifyMemory()::{lambda(tvm::IRModule, 
tvm::transform::PassContext)#1}::operator()(tvm::IRModule, 
tvm::transform::PassContext) const [clone .constprop.0]
     File "<unknown>", line 0, in tvm::runtime::detail::LogFatal::~LogFatal() 
[clone .constprop.0]
     File "<unknown>", line 0, in 
tvm::runtime::detail::LogFatal::Entry::Finalize()
   RuntimeError: Memory verification failed with the following errors:
       Variable `lv3` is directly accessed by host memory (it is not contained 
in a thread environment or in the function arguments.
       Variable `pool_max` is directly accessed by host memory (it is not 
contained in a thread environment or in the function arguments.
       Variable `pool_max` is directly accessed by host memory (it is not 
contained in a thread environment or in the function arguments.
       Variable `pool_max` is directly accessed by host memory (it is not 
contained in a thread environment or in the function arguments.
     Did you forget to bind?
   # from tvm.script import tir as T
   
   @T.prim_func
   def max_pool2d(lv3: T.Buffer((T.int64(1), T.int64(64), T.int64(112), 
T.int64(112)), "float32"), pool_max: T.Buffer((T.int64(1), T.int64(64), 
T.int64(56), T.int64(56)), "float32")):
       T.func_attr({"op_pattern": 4, "target": T.target({"arch": "sm_87", 
"host": {"keys": ["arm_cpu", "cpu"], "kind": "llvm", "mtriple": 
"aarch64-unknown-linux-gnu", "tag": ""}, "keys": ["cuda", "gpu"], "kind": 
"cuda", "max_num_threads": 1024, "tag": "", "thread_warp_size": 32}), 
"tir.noalias": True})
       pad_temp = T.allocate([831744], "float32", "global")
       pad_temp_1 = T.Buffer((T.int64(831744),), data=pad_temp)
       for ax1, ax2, ax3 in T.grid(64, 114, 114):
           lv3_1 = T.Buffer((T.int64(802816),), data=lv3.data)
           pad_temp_1[ax1 * 12996 + ax2 * 114 + ax3] = T.if_then_else(1 <= ax2 
and ax2 < 113 and 1 <= ax3 and ax3 < 113, lv3_1[ax1 * 12544 + ax2 * 112 + ax3 - 
113], T.float32(-340282346638528859811704183484516925440.0))
       for ax1, ax2, ax3, rv0, rv1 in T.grid(64, 56, 56, 3, 3):
           cse_v1: T.int32 = ax1 * 3136 + ax2 * 56 + ax3
           pool_max_1 = T.Buffer((T.int64(200704),), data=pool_max.data)
           if rv0 == 0 and rv1 == 0:
               pool_max_1[cse_v1] = 
T.float32(-340282346638528859811704183484516925440.0)
           pool_max_1[cse_v1] = T.max(pool_max_1[cse_v1], pad_temp_1[ax1 * 
12996 + ax2 * 228 + rv0 * 114 + ax3 * 2 + rv1])
   ```
   
   Unfortunately I'm not familiar with tvm enough to propose a solution, please 
help :)
   
   ### Triage
   
   Please refer to the list of label tags 
[here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the 
relevant tags and add them below in a bullet format (example below).
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to