yaoyaoding commented on code in PR #283:
URL: https://github.com/apache/tvm-ffi/pull/283#discussion_r2561739477


##########
include/tvm/ffi/extra/cuda/cubin_launcher.h:
##########
@@ -0,0 +1,619 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+/*!
+ * \file tvm/ffi/extra/cuda/cubin_launcher.h
+ * \brief CUDA CUBIN launcher utility for loading and executing CUDA kernels.
+ *
+ * This header provides a lightweight C++ wrapper around CUDA Runtime API
+ * for loading CUBIN modules and launching kernels. It supports:
+ * - Loading CUBIN from memory (embedded data)
+ * - Multi-GPU execution using CUDA primary contexts
+ * - Kernel parameter management and launch configuration
+ */
+#ifndef TVM_FFI_EXTRA_CUBIN_LAUNCHER_H_
+#define TVM_FFI_EXTRA_CUBIN_LAUNCHER_H_
+
+#include <cuda_runtime.h>
+#include <tvm/ffi/error.h>
+#include <tvm/ffi/extra/c_env_api.h>
+#include <tvm/ffi/string.h>
+
+#include <cstdint>
+#include <cstring>
+
+namespace tvm {
+namespace ffi {
+
+/*!
+ * \brief Macro for checking CUDA runtime API errors.
+ *
+ * This macro checks the return value of CUDA runtime API calls and throws
+ * a RuntimeError with detailed error information if the call fails.
+ *
+ * \param stmt The CUDA runtime API call to check.
+ */
+#define TVM_FFI_CHECK_CUDA_ERROR(stmt)                                         
     \
+  do {                                                                         
     \
+    cudaError_t __err = (stmt);                                                
     \
+    if (__err != cudaSuccess) {                                                
     \
+      const char* __err_name = cudaGetErrorName(__err);                        
     \
+      const char* __err_str = cudaGetErrorString(__err);                       
     \
+      TVM_FFI_THROW(RuntimeError) << "CUDA Runtime Error: " << __err_name << " 
("   \
+                                  << static_cast<int>(__err) << "): " << 
__err_str; \
+    }                                                                          
     \
+  } while (0)
+
+/*!
+ * \brief A simple 3D dimension type for CUDA kernel launch configuration.
+ *
+ * This struct mimics the behavior of dim3 from CUDA Runtime API and provides
+ * a compatible interface for kernel launch configuration. It can be 
constructed
+ * from 1, 2, or 3 dimensions.
+ */
+struct dim3 {
+  /*! \brief X dimension (number of blocks in x-direction or threads in 
x-direction) */
+  unsigned int x;
+  /*! \brief Y dimension (number of blocks in y-direction or threads in 
y-direction) */
+  unsigned int y;
+  /*! \brief Z dimension (number of blocks in z-direction or threads in 
z-direction) */
+  unsigned int z;
+
+  /*! \brief Default constructor initializes to (1, 1, 1) */
+  dim3() : x(1), y(1), z(1) {}
+
+  /*! \brief Construct with x dimension, y and z default to 1 */
+  explicit dim3(unsigned int x_) : x(x_), y(1), z(1) {}
+
+  /*! \brief Construct with x and y dimensions, z defaults to 1 */
+  dim3(unsigned int x_, unsigned int y_) : x(x_), y(y_), z(1) {}
+
+  /*! \brief Construct with all three dimensions */
+  dim3(unsigned int x_, unsigned int y_, unsigned int z_) : x(x_), y(y_), 
z(z_) {}
+};
+
+/*!
+ * \brief Macro to embed a CUBIN module with static initialization.
+ *
+ * This macro declares external symbols for embedded CUBIN data and creates
+ * a singleton struct to manage the CubinModule instance. The CUBIN data
+ * symbols should be named `__tvm_ffi__cubin_<name>` and 
`__tvm_ffi__cubin_<name>_end`,
+ * typically created using objcopy and ld.
+ *
+ * \par Creating Embedded CUBIN with TVM-FFI Utilities
+ * TVM-FFI provides utilities to simplify CUBIN embedding. You have two 
options:
+ *
+ * \par Option 1: CMake Utility (Recommended)
+ * Use the `tvm_ffi_embed_cubin` CMake function:
+ * \code{.cmake}
+ * # Find tvm_ffi package (provides tvm_ffi_embed_cubin utility)
+ * find_package(tvm_ffi CONFIG REQUIRED)
+ * find_package(CUDAToolkit REQUIRED)
+ *
+ * # Compile CUDA kernel to CUBIN
+ * tvm_ffi_generate_cubin(
+ *   OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/kernel.cubin
+ *   SOURCE src/kernel.cu
+ *   ARCH native  # or sm_75, sm_80, etc.
+ * )
+ *
+ * # Embed CUBIN into C++ object file
+ * tvm_ffi_embed_cubin(
+ *   OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/mycode_with_cubin.o
+ *   SOURCE src/mycode.cc
+ *   CUBIN ${CMAKE_CURRENT_BINARY_DIR}/kernel.cubin
+ *   NAME my_kernels  # Must match TVM_FFI_EMBED_CUBIN(my_kernels) in code
+ * )
+ *
+ * # Link into shared library
+ * add_library(mylib SHARED ${CMAKE_CURRENT_BINARY_DIR}/mycode_with_cubin.o)
+ * target_link_libraries(mylib PRIVATE tvm_ffi_header CUDA::cudart)
+ * \endcode
+ *
+ * \par Option 2: Python Utility
+ * Use the `tvm_ffi.utils.embed_cubin` command-line tool:
+ * \code{.bash}
+ * # Step 1: Compile CUDA kernel to CUBIN
+ * nvcc --cubin -arch=sm_75 kernel.cu -o kernel.cubin
+ *
+ * # Step 2: Compile C++ source to object file
+ * g++ -c -fPIC -std=c++17 -I/path/to/tvm-ffi/include mycode.cc -o mycode.o
+ *
+ * # Step 3: Embed CUBIN using Python utility
+ * python -m tvm_ffi.utils.embed_cubin \
+ *     --output-obj mycode_with_cubin.o \
+ *     --input-obj mycode.o \
+ *     --cubin kernel.cubin \
+ *     --name my_kernels
+ *
+ * # Step 4: Link into shared library
+ * g++ -o mylib.so -shared mycode_with_cubin.o -lcudart
+ * \endcode
+ *
+ * The utilities automatically handle:
+ * - Symbol renaming to __tvm_ffi__cubin_<name> format
+ * - Adding .note.GNU-stack section for security
+ * - Symbol localization to prevent conflicts
+ *
+ * \par Usage in C++ Code
+ * In your C++ source file, use the embedded CUBIN:
+ * \code{.cpp}
+ * #include <tvm/ffi/extra/cuda/cubin_launcher.h>
+ *
+ * // Declare the embedded CUBIN module (name must match CMake NAME parameter)
+ * TVM_FFI_EMBED_CUBIN(my_kernels);
+ *
+ * void MyFunction() {
+ *   // Get kernel from embedded CUBIN (cached in static variable for 
efficiency)
+ *   static auto kernel = TVM_FFI_EMBED_CUBIN_GET_KERNEL(my_kernels, 
"my_kernel");
+ *   // Use kernel...
+ * }
+ * \endcode
+ *
+ * \note CMake Setup: To use the utilities, add to your CMakeLists.txt:
+ * \code{.cmake}
+ * find_package(tvm_ffi CONFIG REQUIRED)  # Provides tvm_ffi_embed_cubin 
utility
+ * \endcode
+ *
+ * \par Option 3: Python Integration with load_inline
+ * When using `tvm_ffi.cpp.load_inline()` with the `embed_cubin` parameter,
+ * the CUBIN data is automatically embedded using the Python utility 
internally:
+ * \code{.py}
+ * from tvm_ffi import cpp
+ * from tvm_ffi.cpp import nvrtc
+ *
+ * # Compile CUDA source to CUBIN
+ * cubin_bytes = nvrtc.nvrtc_compile(cuda_source)
+ *
+ * # Load with embedded CUBIN - automatically handles embedding
+ * mod = cpp.load_inline(
+ *     "my_module",
+ *     cuda_sources=cpp_code,
+ *     embed_cubin={"my_kernels": cubin_bytes},
+ *     extra_ldflags=["-lcudart"]
+ * )
+ * \endcode
+ *
+ * \param name The identifier for this embedded CUBIN module (must match the
+ *             symbol names created with objcopy or the key in embed_cubin 
dict).
+ *
+ * \see TVM_FFI_EMBED_CUBIN_GET_KERNEL
+ * \see CubinModule
+ * \see CubinKernel
+ */
+#define TVM_FFI_EMBED_CUBIN(name)                        \
+  extern "C" const char __tvm_ffi__cubin_##name[];       \
+  extern "C" const char __tvm_ffi__cubin_##name##_end[]; \
+  namespace {                                            \
+  struct EmbedCubinModule_##name {                       \
+    tvm::ffi::CubinModule mod{__tvm_ffi__cubin_##name};  \
+    static EmbedCubinModule_##name* Global() {           \
+      static EmbedCubinModule_##name inst;               \
+      return &inst;                                      \
+    }                                                    \
+  };                                                     \
+  } /* anonymous namespace */
+
+/*!
+ * \brief Macro to get a kernel from an embedded CUBIN module.
+ *
+ * This macro retrieves a kernel by name from a previously declared embedded
+ * CUBIN module (using TVM_FFI_EMBED_CUBIN). The result is a CubinKernel object
+ * that can be used to launch the kernel with specified parameters.
+ *
+ * \par Performance Tip
+ * It's recommended to store the result in a static variable to avoid repeated
+ * kernel lookups, which improves performance:
+ * \code{.cpp}
+ * static auto kernel = TVM_FFI_EMBED_CUBIN_GET_KERNEL(my_kernels, 
"kernel_name");
+ * \endcode
+ *
+ * \par Complete Example
+ * \code{.cpp}
+ * // Declare embedded CUBIN module
+ * TVM_FFI_EMBED_CUBIN(my_kernels);
+ *
+ * void LaunchKernel(tvm::ffi::TensorView input, tvm::ffi::TensorView output) {
+ *   // Get kernel (cached in static variable for efficiency)
+ *   static auto kernel = TVM_FFI_EMBED_CUBIN_GET_KERNEL(my_kernels, 
"add_one");
+ *
+ *   // Prepare kernel arguments
+ *   void* in_ptr = input.data_ptr();
+ *   void* out_ptr = output.data_ptr();
+ *   int64_t n = input.size(0);
+ *   void* args[] = {&in_ptr, &out_ptr, &n};
+ *
+ *   // Configure launch
+ *   tvm::ffi::dim3 grid((n + 255) / 256);
+ *   tvm::ffi::dim3 block(256);
+ *
+ *   // Get stream and launch
+ *   DLDevice device = input.device();
+ *   cudaStream_t stream = static_cast<cudaStream_t>(
+ *       TVMFFIEnvGetStream(device.device_type, device.device_id));
+ *
+ *   cudaError_t result = kernel.Launch(args, grid, block, stream);
+ *   TVM_FFI_CHECK_CUDA_ERROR(result);
+ * }
+ * \endcode
+ *
+ * \param name The identifier of the embedded CUBIN module (must match the name
+ *             used in TVM_FFI_EMBED_CUBIN).
+ * \param kernel_name The name of the kernel function as it appears in the 
CUBIN
+ *                    (typically the function name for `extern "C"` kernels).
+ * \return A CubinKernel object for the specified kernel.
+ *
+ * \see TVM_FFI_EMBED_CUBIN
+ * \see CubinKernel::Launch
+ */
+#define TVM_FFI_EMBED_CUBIN_GET_KERNEL(name, kernel_name) \
+  (EmbedCubinModule_##name::Global()->mod[kernel_name])
+
+// Forward declaration
+class CubinKernel;
+
+/*!
+ * \brief CUDA CUBIN module loader and manager.
+ *
+ * This class provides a RAII wrapper around CUDA Runtime API's library 
management.
+ * It loads a CUBIN module from memory and manages the library handle 
automatically.
+ * The library is unloaded when the CubinModule object is destroyed.
+ *
+ * \par Features
+ * - Load CUBIN from memory (embedded data or runtime-generated)
+ * - Automatic resource management (RAII pattern)
+ * - Multi-GPU execution using CUDA primary contexts
+ * - Retrieve multiple kernels from the same module
+ *
+ * \par Example Usage
+ * \code{.cpp}
+ * // Load CUBIN from memory
+ * tvm::ffi::Bytes cubin_data = ...;
+ * tvm::ffi::CubinModule module(cubin_data);
+ *
+ * // Get kernels by name
+ * tvm::ffi::CubinKernel kernel1 = module["add_one"];
+ * tvm::ffi::CubinKernel kernel2 = module.GetKernel("mul_two");
+ *
+ * // Launch kernels
+ * void* args[] = {...};
+ * tvm::ffi::dim3 grid(32), block(256);
+ * cudaStream_t stream = ...;
+ * kernel1.Launch(args, grid, block, stream);
+ * \endcode
+ *
+ * \note This class is movable but not copyable.
+ * \see TVM_FFI_EMBED_CUBIN for embedding CUBIN at compile time
+ * \see CubinKernel for kernel launching
+ */
+class CubinModule {
+ public:
+  /*!
+   * \brief Load CUBIN module from memory.
+   *
+   * \param bytes CUBIN binary data as a Bytes object.
+   */
+  explicit CubinModule(const Bytes& bytes) {
+    TVM_FFI_CHECK_CUDA_ERROR(
+        cudaLibraryLoadData(&library_, bytes.data(), nullptr, nullptr, 0, 
nullptr, nullptr, 0));
+  }
+
+  /*!
+   * \brief Load CUBIN module from raw memory buffer.
+   *
+   * \param code Pointer to CUBIN binary data.
+   * \note The `code` buffer points to an ELF image.
+   */
+  explicit CubinModule(const char* code) {
+    TVM_FFI_CHECK_CUDA_ERROR(
+        cudaLibraryLoadData(&library_, code, nullptr, nullptr, 0, nullptr, 
nullptr, 0));
+  }
+
+  /*! \brief Destructor unloads the library */
+  ~CubinModule() {
+    if (library_ != nullptr) {
+      cudaLibraryUnload(library_);
+    }
+  }
+
+  /*!
+   * \brief Get a kernel function from the module by name.
+   *
+   * \param name Name of the kernel function.
+   * \return CubinKernel object representing the loaded kernel.
+   */
+  CubinKernel GetKernel(const char* name);
+
+  /*!
+   * \brief Get a kernel function from the module by name with maximum dynamic 
shared memory.
+   *
+   * \param name Name of the kernel function.
+   * \param dynamic_smem_max Maximum dynamic shared memory in bytes to set for 
this kernel.
+   *                         -1 (default) means maximum available dynamic 
shared memory
+   *                         (device max - static shared memory used by 
kernel).
+   * \return CubinKernel object representing the loaded kernel.
+   */
+  CubinKernel GetKernelWithMaxDynamicSharedMemory(const char* name, int64_t 
dynamic_smem_max);
+
+  /*!
+   * \brief Operator[] for convenient kernel access.
+   *
+   * It's equivalent to calling GetKernel(name, -1).
+   *
+   * \param name Name of the kernel function.
+   * \return CubinKernel object representing the loaded kernel.
+   */
+  CubinKernel operator[](const char* name);
+
+  /*! \brief Get the underlying cudaLibrary_t handle */
+  cudaLibrary_t GetHandle() const { return library_; }
+
+  // Non-copyable
+  CubinModule(const CubinModule&) = delete;
+  CubinModule& operator=(const CubinModule&) = delete;
+
+  /*!
+   * \brief Move constructor for CubinModule.
+   *
+   * Transfers ownership of the CUDA library handle from another CubinModule 
instance.
+   *
+   * \param other The source CubinModule to move from (will be left in an 
empty state).
+   */
+  CubinModule(CubinModule&& other) noexcept : library_(other.library_) { 
other.library_ = nullptr; }
+
+  /*!
+   * \brief Move assignment operator for CubinModule.
+   *
+   * Transfers ownership of the CUDA library handle from another CubinModule 
instance.
+   * Cleans up any existing library handle in this instance before taking 
ownership.
+   *
+   * \param other The source CubinModule to move from (will be left in an 
empty state).
+   * \return Reference to this CubinModule.
+   */
+  CubinModule& operator=(CubinModule&& other) noexcept {
+    if (this != &other) {
+      if (library_ != nullptr) {
+        cudaLibraryUnload(library_);
+      }
+      library_ = other.library_;
+      other.library_ = nullptr;
+    }
+    return *this;
+  }
+
+ private:
+  cudaLibrary_t library_ = nullptr;
+};
+
+/*!
+ * \brief CUDA kernel handle for launching kernels.
+ *
+ * This class represents a loaded CUDA kernel function and provides
+ * methods to launch it with specified grid/block dimensions, arguments,
+ * and stream configuration. Obtained from CubinModule by kernel name.
+ *
+ * \par Usage Pattern
+ * \code{.cpp}
+ * // Get kernel from module
+ * tvm::ffi::CubinKernel kernel = module["kernel_name"];
+ *
+ * // Prepare arguments (must be pointers to actual values)
+ * void* data_ptr = tensor.data_ptr();
+ * int64_t size = tensor.size(0);
+ * void* args[] = {&data_ptr, &size};
+ *
+ * // Configure launch dimensions
+ * tvm::ffi::dim3 grid(32);    // 32 blocks
+ * tvm::ffi::dim3 block(256);  // 256 threads per block
+ *
+ * // Launch on stream
+ * cudaStream_t stream = ...;
+ * cudaError_t result = kernel.Launch(args, grid, block, stream);
+ * TVM_FFI_CHECK_CUDA_ERROR(result);
+ * \endcode
+ *
+ * \note This class is movable but not copyable.
+ * \see CubinModule for loading CUBIN and getting kernels
+ * \see dim3 for grid/block dimension specification
+ */
+class CubinKernel {
+ public:
+  /*!
+   * \brief Construct a CubinKernel from a library and kernel name.
+   *
+   * \param library The cudaLibrary_t handle.
+   * \param name Name of the kernel function.
+   */
+  CubinKernel(cudaLibrary_t library, const char* name) {
+    TVM_FFI_CHECK_CUDA_ERROR(cudaLibraryGetKernel(&kernel_, library, name));
+  }
+
+  /*! \brief Destructor (kernel handle doesn't need explicit cleanup) */
+  ~CubinKernel() = default;
+
+  /*!
+   * \brief Launch the kernel with specified parameters.
+   *
+   * This function launches the kernel on the current CUDA context/device using
+   * the CUDA Runtime API. The kernel executes asynchronously on the specified 
stream.
+   *
+   * \par Argument Preparation
+   * The `args` array must contain pointers to the actual argument values, not 
the
+   * values themselves. For example:
+   * \code{.cpp}
+   * void* data_ptr = tensor.data_ptr();
+   * int64_t size = 100;
+   * void* args[] = {&data_ptr, &size};  // Note: addresses of the variables
+   * \endcode
+   *
+   * \par Launch Configuration
+   * Grid and block dimensions determine the kernel's parallelism:
+   * - Grid: Number of thread blocks (can be 1D, 2D, or 3D)
+   * - Block: Number of threads per block (can be 1D, 2D, or 3D)
+   * - Total threads = grid.x * grid.y * grid.z * block.x * block.y * block.z
+   *
+   * \par Error Checking
+   * Always check the returned cudaError_t:
+   * \code{.cpp}
+   * cudaError_t result = kernel.Launch(args, grid, block, stream);
+   * TVM_FFI_CHECK_CUDA_ERROR(result);
+   * \endcode
+   *
+   * \param args Array of pointers to kernel arguments (must point to actual 
values).
+   * \param grid Grid dimensions (number of blocks in x, y, z).
+   * \param block Block dimensions (threads per block in x, y, z).
+   * \param stream CUDA stream to launch the kernel on (use 0 for default 
stream).
+   * \param dyn_smem_bytes Dynamic shared memory size in bytes (default: 0).
+   * \return cudaError_t error code from cudaLaunchKernel (cudaSuccess on 
success).
+   *
+   * \note The kernel executes asynchronously. Use cudaStreamSynchronize() or
+   *       cudaDeviceSynchronize() to wait for completion if needed.
+   */
+  cudaError_t Launch(void** args, dim3 grid, dim3 block, cudaStream_t stream,
+                     uint32_t dyn_smem_bytes = 0) {
+    // Cast cudaKernel_t to const void* for use with cudaLaunchKernel
+    // The Runtime API accepts cudaKernel_t directly as a function pointer
+    auto kernel = reinterpret_cast<const void*>(kernel_);
+    return cudaLaunchKernel(kernel, {grid.x, grid.y, grid.z}, {block.x, 
block.y, block.z}, args,
+                            dyn_smem_bytes, stream);
+  }
+
+  /*! \brief Get the underlying cudaKernel_t handle */
+  cudaKernel_t GetHandle() const { return kernel_; }
+
+  // Non-copyable
+  CubinKernel(const CubinKernel&) = delete;
+  CubinKernel& operator=(const CubinKernel&) = delete;
+
+  /*!
+   * \brief Move constructor for CubinKernel.
+   *
+   * Transfers ownership of the CUDA kernel handle from another CubinKernel 
instance.
+   *
+   * \param other The source CubinKernel to move from (will be left in an 
empty state).
+   */
+  CubinKernel(CubinKernel&& other) noexcept : kernel_(other.kernel_) { 
other.kernel_ = nullptr; }
+
+  /*!
+   * \brief Move assignment operator for CubinKernel.
+   *
+   * Transfers ownership of the CUDA kernel handle from another CubinKernel 
instance.
+   *
+   * \param other The source CubinKernel to move from (will be left in an 
empty state).
+   * \return Reference to this CubinKernel.
+   */
+  CubinKernel& operator=(CubinKernel&& other) noexcept {
+    if (this != &other) {
+      kernel_ = other.kernel_;
+      other.kernel_ = nullptr;
+    }
+    return *this;
+  }
+
+ private:
+  /*!
+   * \brief Set maximum dynamic shared memory for this kernel across all 
devices.
+   *
+   * This method configures the maximum dynamic shared memory that can be 
allocated
+   * when launching this kernel. It must be called after the kernel is loaded.
+   *
+   * \param dynamic_smem_max Maximum dynamic shared memory in bytes to set.
+   *                         -1 (default) means maximum available dynamic 
shared memory,
+   *                         which is computed as (device max shared memory - 
static shared memory).
+   *                         For -1, the method queries the kernel's static 
shared memory usage
+   *                         and sets the attribute to the remaining available 
shared memory.
+   *
+   * \note This sets the maximum cap but doesn't force allocation. The actual 
dynamic
+   *       shared memory used is controlled by the dyn_smem_bytes parameter in 
Launch().
+   * \note This method attempts to set the attribute for all available devices 
and will
+   *       only throw an error if it fails for ALL devices.
+   */
+  void SetMaxDynamicSharedMemory(int64_t dynamic_smem_max = -1) {
+    int device_count = 0;
+    cudaError_t err = cudaGetDeviceCount(&device_count);
+    if (err != cudaSuccess || device_count == 0) {
+      return;  // No devices available, nothing to configure
+    }
+
+    bool any_success = false;
+    for (int device_id = 0; device_id < device_count; ++device_id) {
+      // Query device's maximum shared memory per block
+      int max_shared_mem = 0;
+      err = cudaDeviceGetAttribute(&max_shared_mem, 
cudaDevAttrMaxSharedMemoryPerBlock, device_id);
+      if (err != cudaSuccess) {
+        continue;  // Skip this device if we can't get its attribute
+      }
+
+      int shared_mem_to_set;
+      if (dynamic_smem_max == -1) {
+        // Query the kernel's static shared memory usage
+        cudaFuncAttributes func_attr;
+        err = cudaFuncGetAttributes(&func_attr, reinterpret_cast<const 
void*>(kernel_));

Review Comment:
   After looking up the documentation:
   - there is no runtime API function named `cudaKernelGetAttributes`
   - the documentation says we can use `cudaFuncGetAttributes` to query 
attribute of cudaKernel_t.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to