On 2021-06-09 14:17, Dmitry Baryshkov wrote:
Move setting up encoders from set_encoder_mode to
_dpu_kms_initialize_dsi() / _dpu_kms_initialize_displayport(). This
allows us to support not only "single DSI" and "dual DSI" but also "two
independent DSI" configurations. In future this would also help adding
support for multiple DP connectors.

Signed-off-by: Dmitry Baryshkov <dmitry.barysh...@linaro.org>
I will have to see Bjorn's changes to check why it was dependent on this cleanup.
Is the plan to call _dpu_kms_initialize_displayport() twice?
But still I am not able to put together where is the dependency on that series
with this one. Can you please elaborate on that a little bit?

---
 drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c | 89 ++++++++++++-------------
 1 file changed, 44 insertions(+), 45 deletions(-)

diff --git a/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c
b/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c
index 1d3a4f395e74..b63e1c948ff2 100644
--- a/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c
+++ b/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c
@@ -471,30 +471,55 @@ static int _dpu_kms_initialize_dsi(struct drm_device *dev,
                                    struct dpu_kms *dpu_kms)
 {
        struct drm_encoder *encoder = NULL;
+       struct msm_display_info info;
        int i, rc = 0;

        if (!(priv->dsi[0] || priv->dsi[1]))
                return rc;

-       /*TODO: Support two independent DSI connectors */
-       encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI);
-       if (IS_ERR(encoder)) {
-               DPU_ERROR("encoder init failed for dsi display\n");
-               return PTR_ERR(encoder);
-       }
-
-       priv->encoders[priv->num_encoders++] = encoder;
-
        for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
                if (!priv->dsi[i])
                        continue;

+               if (!encoder) {
+                       encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI);
+                       if (IS_ERR(encoder)) {
+                               DPU_ERROR("encoder init failed for dsi 
display\n");
+                               return PTR_ERR(encoder);
+                       }
+
+                       priv->encoders[priv->num_encoders++] = encoder;
+
+                       memset(&info, 0, sizeof(info));
+                       info.intf_type = encoder->encoder_type;
+                       info.capabilities = msm_dsi_is_cmd_mode(priv->dsi[i]) ?
+                               MSM_DISPLAY_CAP_CMD_MODE :
+                               MSM_DISPLAY_CAP_VID_MODE;
+               }
+
                rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder);
                if (rc) {
                        DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
                                i, rc);
                        break;
                }
+
+               info.h_tile_instance[info.num_of_h_tiles++] = i;
+
+               if (!msm_dsi_is_dual_dsi(priv->dsi[i])) {

I would like to clarify the terminology of dual_dsi in the current DSI driver before the rest of the reviews. Today IS_DUAL_DSI() means that two DSIs are driving the same display and the two DSIs are operating in master-slave mode
and are being driven by the same PLL.
Usually, dual independent DSI means two DSIs driving two separate panels using two separate PLLs ( DSI0 with PLL0 and DSI1 with PLL1) I assume thats happening due to the foll logic and both DSI PHYs are operating in STANDALONE mode:

    if (!IS_DUAL_DSI()) {
        ret = msm_dsi_host_register(msm_dsi->host, true);
        if (ret)
            return ret;

        msm_dsi_phy_set_usecase(msm_dsi->phy, MSM_DSI_PHY_STANDALONE);
        ret = msm_dsi_host_set_src_pll(msm_dsi->host, msm_dsi->phy);

+                       rc = dpu_encoder_setup(dev, encoder, &info);
+                       if (rc)
+                               DPU_ERROR("failed to setup DPU encoder %d: 
rc:%d\n",
+                                               encoder->base.id, rc);
+                       encoder = NULL;
+               }
+       }
+
+       if (encoder) {

We will hit this case only for split-DSI right? ( that is two DSIs driving the same panel ). Even single DSI will be created in the above loop now. So this looks a bit confusing at the moment.

I think we need to be more clear on dual-DSI Vs split-DSI to avoid confusion in the code about which one means what and the one which we are currently using. So what about having IS_DUAL_DSI() and IS_SPLIT_DSI() to distinguish the terminologies and chaging
DSI driver accordingly.

+               rc = dpu_encoder_setup(dev, encoder, &info);
+               if (rc)
+                       DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
+                                       encoder->base.id, rc);
        }

        return rc;
@@ -505,6 +530,7 @@ static int _dpu_kms_initialize_displayport(struct
drm_device *dev,
                                            struct dpu_kms *dpu_kms)
 {
        struct drm_encoder *encoder = NULL;
+       struct msm_display_info info;
        int rc = 0;

        if (!priv->dp)
@@ -516,6 +542,7 @@ static int _dpu_kms_initialize_displayport(struct
drm_device *dev,
                return PTR_ERR(encoder);
        }

+       memset(&info, 0, sizeof(info));
        rc = msm_dp_modeset_init(priv->dp, dev, encoder);
        if (rc) {
                DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
@@ -524,6 +551,14 @@ static int _dpu_kms_initialize_displayport(struct
drm_device *dev,
        }

        priv->encoders[priv->num_encoders++] = encoder;
+
+       info.num_of_h_tiles = 1;
+       info.capabilities = MSM_DISPLAY_CAP_VID_MODE;
+       info.intf_type = encoder->encoder_type;
+       rc = dpu_encoder_setup(dev, encoder, &info);
+       if (rc)
+               DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
+                       encoder->base.id, rc);
        return rc;
 }

@@ -726,41 +761,6 @@ static void dpu_kms_destroy(struct msm_kms *kms)
        msm_kms_destroy(&dpu_kms->base);
 }

-static void _dpu_kms_set_encoder_mode(struct msm_kms *kms,
-                                struct drm_encoder *encoder,
-                                bool cmd_mode)
-{
-       struct msm_display_info info;
-       struct msm_drm_private *priv = encoder->dev->dev_private;
-       int i, rc = 0;
-
-       memset(&info, 0, sizeof(info));
-
-       info.intf_type = encoder->encoder_type;
-       info.capabilities = cmd_mode ? MSM_DISPLAY_CAP_CMD_MODE :
-                       MSM_DISPLAY_CAP_VID_MODE;
-
-       switch (info.intf_type) {
-       case DRM_MODE_ENCODER_DSI:
-               /* TODO: No support for DSI swap */
-               for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
-                       if (priv->dsi[i]) {
-                               info.h_tile_instance[info.num_of_h_tiles] = i;
-                               info.num_of_h_tiles++;
-                       }
-               }
-               break;
-       case DRM_MODE_ENCODER_TMDS:
-               info.num_of_h_tiles = 1;
-               break;
-       }
-
-       rc = dpu_encoder_setup(encoder->dev, encoder, &info);
-       if (rc)
-               DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n",
-                       encoder->base.id, rc);
-}
-
It seems we can get rid of set_encoder_mode for DP because the way we are using it today seems not right. Ideally, the purpose was that once we read the EDID, the information we read like the tile group etc can be used when we are setting up the encoder. But today, we are just hard-coding the number of tiles. But I just think whether looking ahead, we should still have some callback which can be called after EDID has been read instead of doing it in _dpu_kms_initialize_displayport. Perhaps that can be a separate patch.

 static irqreturn_t dpu_irq(struct msm_kms *kms)
 {
        struct dpu_kms *dpu_kms = to_dpu_kms(kms);
@@ -863,7 +863,6 @@ static const struct msm_kms_funcs kms_funcs = {
        .get_format      = dpu_get_msm_format,
        .round_pixclk    = dpu_kms_round_pixclk,
        .destroy         = dpu_kms_destroy,
-       .set_encoder_mode = _dpu_kms_set_encoder_mode,
I would like to get Rob's comment on why we had set_encoder_mode in the first place. Its there even in mdp5.

in current msm dsi, the dsi bind will happen only after the panel has attached and the msm_drv's bind will happen only after that since its the component master in that case what was the need for set_encoder_mode because we will know the panel's video/cmd mode in the dsi_bind call
am i missing something about why mdp5 had this?

From the dpu perspective, since dsi_bind() happens only once panel has attached.
        .snapshot        = dpu_kms_mdp_snapshot,
 #ifdef CONFIG_DEBUG_FS
        .debugfs_init    = dpu_kms_debugfs_init,

Reply via email to