maxima-5.27.0 is in Gentoo. Testsuite full times on my 32-bit x86 box (seconds) and failed tests are:
sbcl-1.0.55 166 cmucl-20c 181 gcl-2.6.8_pre 184 clozurecl-1.8 253 rtest15 (37, 193, 196) ecl-12.2.1 345 rtest8 (126, 127) clisp-2.49 569 Details of failed tests: clozurecl: ---------------------------------------------------------------- ********************** Problem 37 *************** Input: 2 2 - %pi sin (3 a) sin (----- + a + b) 3 (----------------------------- 2 %pi sin (a - ---) 3 - %pi 2 sin(a) sin(3 a) cos(b) sin(----- + a + b) sin(3 a + 3 b) 3 - ---------------------------------------------------------- %pi sin(a - ---) sin(a + b) 3 2 2 sin (a) sin (3 a + 3 b) + -----------------------, result : trigrat(%%), 2 sin (a + b) expected : (- (- 9 + 10 cos(2 a) - 2 sqrt(3) sin(2 a) - cos(4 a) + sqrt(3) sin(4 a) + 10 cos(2 b) - 2 sqrt(3) sin(2 b) - cos(4 b) + sqrt(3) sin(4 b) - 4 cos(2 b - 2 a) - 8 cos(2 a + 2 b) + 4 sqrt(3) sin(2 a + 2 b) + 2 cos(4 a + 2 b) - 2 sqrt(3) sin(4 a + 2 b) + 2 cos(2 a + 4 b) - 2 sqrt(3) sin(2 a + 4 b) - cos(4 a + 4 b) + sqrt(3) sin(4 a + 4 b)))/4, ratsimp(result - expected)) Result: Polynomial quotient is not exact error-catch This differed from the expected result: 0 ********************** Problem 193 *************** Input: 2 t log(t) integrate(-----------------, t, 0, 1) 2 4 (t - 1) (1 + t ) Result: 2 (sqrt(2) - 2) %pi - ------------------ 32 This differed from the expected result: 2 (sqrt(2) - 1) %pi ------------------ 9/2 2 ********************** Problem 196 *************** Input: 1 factor(expand(sqrtdenest(integrate(------------, x, 0, 1)))) 1 4 - + (x - 3) 2 3/4 9/4 73 + sqrt(2) + 2 - 3 2 - factor((- (- log(----------------------------) 33 3/4 9/4 3/4 5/2 13/4 73 + sqrt(2) - 2 + 3 2 - 2 + 2 - 2 + log(----------------------------) + 2 atan(---------------------) 33 3/4 13/4 98 + 2 - 2 3/4 5/2 13/4 2 + 2 + 2 7/4 + 2 atan(-------------------)))/2 ) 3/4 13/4 - 98 + 2 - 2 Result: 13/4 5/2 3/4 13/4 5/2 3/4 2 + 2 + 2 - 2 + 2 - 2 (2 atan(-------------------) + 2 atan(---------------------) 13/4 3/4 13/4 3/4 - 2 + 2 - 98 - 2 + 2 + 98 9/4 3/4 9/4 3/4 3 2 - 2 + sqrt(2) + 73 - 3 2 + 2 + sqrt(2) + 73 + log(----------------------------) - log(------------------------------)) 33 33 9/4 3/4 7/4 3 2 - 2 + sqrt(2) + 73 /2 - (log(----------------------------) 33 9/4 3/4 - 3 2 + 2 + sqrt(2) + 73 - log(------------------------------) - 2 33 3/4 1/4 79 2 + 365 sqrt(2) + 877 2 + 5 atan(------------------------------------) 10657 3/4 1/4 - 79 2 + 365 sqrt(2) - 877 2 + 5 7/4 + 2 atan(--------------------------------------))/2 10657 This differed from the expected result: 0 ---------------------------------------------------------------- ecl: ---------------------------------------------------------------- ********************** Problem 126 *************** Input: 1 2 (f : diff(----------------, a), g : quad_qags(f b (1 - b) , b, 0, 1) , 2 1 (a - b) + 1 + 1 find_root(g = 0, a, 0, 1)) Result: 2 2 (1 - b) (a - b) b find_root(subscript(quad_qags(- --------------------, b, 0, 1, epsrel = 1.e-8, 2 2 ((a - b) + 2) epsabs = 0.0, limit = 200), 1) = 0, a, .3980373668760611, 0.375) This differed from the expected result: .3978613590133817 ********************** Problem 127 *************** Input: 1 2 (f : diff(----------------, a), g : quad_qags(f b (1 - b) , b, 0, 1) , 2 1 (a - b) + 1 + 1 find_root(g = 0, a, 0, 1)) Result: 2 2 (1 - b) (a - b) b find_root(quad_qags(- --------------------, b, 0, 1) = 0, a, 2 2 ((a - b) + 2) 1 .3980373668760611, 0.375) This differed from the expected result: .3978613590133817 ---------------------------------------------------------------- Andrey _______________________________________________ Maxima mailing list max...@math.utexas.edu http://www.math.utexas.edu/mailman/listinfo/maxima ------------------------------------------------------------------------------ For Developers, A Lot Can Happen In A Second. Boundary is the first to Know...and Tell You. Monitor Your Applications in Ultra-Fine Resolution. Try it FREE! http://p.sf.net/sfu/Boundary-d2dvs2 _______________________________________________ Ecls-list mailing list Ecls-list@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/ecls-list