Revision: 18840
http://sourceforge.net/p/edk2/code/18840
Author: vanjeff
Date: 2015-11-17 05:04:08 +0000 (Tue, 17 Nov 2015)
Log Message:
-----------
UefiCpuPkg: Add PiSmmCpuDxeSmm module no IA32/X64 files
Add module that initializes a CPU for the SMM environment and
installs the first level SMI handler. This module along with the
SMM IPL and SMM Core provide the services required for
DXE_SMM_DRIVERS to register hardware and software SMI handlers.
CPU specific features are abstracted through the SmmCpuFeaturesLib
Platform specific features are abstracted through the
SmmCpuPlatformHookLib
Several PCDs are added to enable/disable features and configure
settings for the PiSmmCpuDxeSmm module
Changes between [PATCH v1] and [PATCH v2]:
1) Swap PTE init order for QEMU compatibility.
Current PTE initialization algorithm works on HW but breaks QEMU
emulator. Update the PTE initialization order to be compatible
with both.
2) Update comment block that describes 32KB SMBASE alignment requirement
to match contents of Intel(R) 64 and IA-32 Architectures Software
Developer's Manual
3) Remove BUGBUG comment and call to ClearSmi() that is not required.
SMI should be cleared by root SMI handler.
(Sync patch r18645 from main trunk.)
[[email protected]: Fix code style issues reported by ECC]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Michael Kinney <[email protected]>
Cc: Laszlo Ersek <[email protected]>
Cc: Paolo Bonzini <[email protected]>
[[email protected]: InitPaging: prepare PT before filling in PDE]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Paolo Bonzini <[email protected]>
Acked-by: Laszlo Ersek <[email protected]>
Reviewed-by: Jeff Fan <[email protected]>
Revision Links:
--------------
http://sourceforge.net/p/edk2/code/18645
Modified Paths:
--------------
branches/UDK2015/UefiCpuPkg/UefiCpuPkg.dec
branches/UDK2015/UefiCpuPkg/UefiCpuPkg.uni
Added Paths:
-----------
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.c
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.h
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.h
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.inf
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.uni
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmmExtra.uni
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.h
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfileInternal.h
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/SmramSaveState.c
branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/SyncTimer.c
Added: branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c
===================================================================
--- branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c
(rev 0)
+++ branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c 2015-11-17 05:04:08 UTC
(rev 18840)
@@ -0,0 +1,491 @@
+/** @file
+Code for Processor S3 restoration
+
+Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD
License
+which accompanies this distribution. The full text of the license may be
found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "PiSmmCpuDxeSmm.h"
+
+typedef struct {
+ UINTN Lock;
+ VOID *StackStart;
+ UINTN StackSize;
+ VOID *ApFunction;
+ IA32_DESCRIPTOR GdtrProfile;
+ IA32_DESCRIPTOR IdtrProfile;
+ UINT32 BufferStart;
+ UINT32 Cr3;
+} MP_CPU_EXCHANGE_INFO;
+
+typedef struct {
+ UINT8 *RendezvousFunnelAddress;
+ UINTN PModeEntryOffset;
+ UINTN FlatJumpOffset;
+ UINTN Size;
+ UINTN LModeEntryOffset;
+ UINTN LongJumpOffset;
+} MP_ASSEMBLY_ADDRESS_MAP;
+
+/**
+ Get starting address and size of the rendezvous entry for APs.
+ Information for fixing a jump instruction in the code is also returned.
+
+ @param AddressMap Output buffer for address map information.
+**/
+VOID *
+EFIAPI
+AsmGetAddressMap (
+ MP_ASSEMBLY_ADDRESS_MAP *AddressMap
+ );
+
+#define LEGACY_REGION_SIZE (2 * 0x1000)
+#define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE)
+#define MSR_SPIN_LOCK_INIT_NUM 15
+
+ACPI_CPU_DATA mAcpiCpuData;
+UINT32 mNumberToFinish;
+MP_CPU_EXCHANGE_INFO *mExchangeInfo;
+BOOLEAN mRestoreSmmConfigurationInS3 = FALSE;
+VOID *mGdtForAp = NULL;
+VOID *mIdtForAp = NULL;
+VOID *mMachineCheckHandlerForAp = NULL;
+MP_MSR_LOCK *mMsrSpinLocks = NULL;
+UINTN mMsrSpinLockCount = MSR_SPIN_LOCK_INIT_NUM;
+UINTN mMsrCount = 0;
+
+/**
+ Get MSR spin lock by MSR index.
+
+ @param MsrIndex MSR index value.
+
+ @return Pointer to MSR spin lock.
+
+**/
+SPIN_LOCK *
+GetMsrSpinLockByIndex (
+ IN UINT32 MsrIndex
+ )
+{
+ UINTN Index;
+ for (Index = 0; Index < mMsrCount; Index++) {
+ if (MsrIndex == mMsrSpinLocks[Index].MsrIndex) {
+ return &mMsrSpinLocks[Index].SpinLock;
+ }
+ }
+ return NULL;
+}
+
+/**
+ Initialize MSR spin lock by MSR index.
+
+ @param MsrIndex MSR index value.
+
+**/
+VOID
+InitMsrSpinLockByIndex (
+ IN UINT32 MsrIndex
+ )
+{
+ UINTN NewMsrSpinLockCount;
+
+ if (mMsrSpinLocks == NULL) {
+ mMsrSpinLocks = (MP_MSR_LOCK *) AllocatePool (sizeof (MP_MSR_LOCK) *
mMsrSpinLockCount);
+ ASSERT (mMsrSpinLocks != NULL);
+ }
+ if (GetMsrSpinLockByIndex (MsrIndex) == NULL) {
+ //
+ // Initialize spin lock for MSR programming
+ //
+ mMsrSpinLocks[mMsrCount].MsrIndex = MsrIndex;
+ InitializeSpinLock (&mMsrSpinLocks[mMsrCount].SpinLock);
+ mMsrCount ++;
+ if (mMsrCount == mMsrSpinLockCount) {
+ //
+ // If MSR spin lock buffer is full, enlarge it
+ //
+ NewMsrSpinLockCount = mMsrSpinLockCount + MSR_SPIN_LOCK_INIT_NUM;
+ mMsrSpinLocks = ReallocatePool (
+ sizeof (MP_MSR_LOCK) * mMsrSpinLockCount,
+ sizeof (MP_MSR_LOCK) * NewMsrSpinLockCount,
+ mMsrSpinLocks
+ );
+ mMsrSpinLockCount = NewMsrSpinLockCount;
+ }
+ }
+}
+
+/**
+ Sync up the MTRR values for all processors.
+
+ @param MtrrTable Table holding fixed/variable MTRR values to be loaded.
+**/
+VOID
+EFIAPI
+LoadMtrrData (
+ EFI_PHYSICAL_ADDRESS MtrrTable
+ )
+/*++
+
+Routine Description:
+
+ Sync up the MTRR values for all processors.
+
+Arguments:
+
+Returns:
+ None
+
+--*/
+{
+ MTRR_SETTINGS *MtrrSettings;
+
+ MtrrSettings = (MTRR_SETTINGS *) (UINTN) MtrrTable;
+ MtrrSetAllMtrrs (MtrrSettings);
+}
+
+/**
+ Programs registers for the calling processor.
+
+ This function programs registers for the calling processor.
+
+ @param RegisterTable Pointer to register table of the running processor.
+
+**/
+VOID
+SetProcessorRegister (
+ IN CPU_REGISTER_TABLE *RegisterTable
+ )
+{
+ CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
+ UINTN Index;
+ UINTN Value;
+ SPIN_LOCK *MsrSpinLock;
+
+ //
+ // Traverse Register Table of this logical processor
+ //
+ RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN)
RegisterTable->RegisterTableEntry;
+ for (Index = 0; Index < RegisterTable->TableLength; Index++,
RegisterTableEntry++) {
+ //
+ // Check the type of specified register
+ //
+ switch (RegisterTableEntry->RegisterType) {
+ //
+ // The specified register is Control Register
+ //
+ case ControlRegister:
+ switch (RegisterTableEntry->Index) {
+ case 0:
+ Value = AsmReadCr0 ();
+ Value = (UINTN) BitFieldWrite64 (
+ Value,
+ RegisterTableEntry->ValidBitStart,
+ RegisterTableEntry->ValidBitStart +
RegisterTableEntry->ValidBitLength - 1,
+ (UINTN) RegisterTableEntry->Value
+ );
+ AsmWriteCr0 (Value);
+ break;
+ case 2:
+ Value = AsmReadCr2 ();
+ Value = (UINTN) BitFieldWrite64 (
+ Value,
+ RegisterTableEntry->ValidBitStart,
+ RegisterTableEntry->ValidBitStart +
RegisterTableEntry->ValidBitLength - 1,
+ (UINTN) RegisterTableEntry->Value
+ );
+ AsmWriteCr2 (Value);
+ break;
+ case 3:
+ Value = AsmReadCr3 ();
+ Value = (UINTN) BitFieldWrite64 (
+ Value,
+ RegisterTableEntry->ValidBitStart,
+ RegisterTableEntry->ValidBitStart +
RegisterTableEntry->ValidBitLength - 1,
+ (UINTN) RegisterTableEntry->Value
+ );
+ AsmWriteCr3 (Value);
+ break;
+ case 4:
+ Value = AsmReadCr4 ();
+ Value = (UINTN) BitFieldWrite64 (
+ Value,
+ RegisterTableEntry->ValidBitStart,
+ RegisterTableEntry->ValidBitStart +
RegisterTableEntry->ValidBitLength - 1,
+ (UINTN) RegisterTableEntry->Value
+ );
+ AsmWriteCr4 (Value);
+ break;
+ default:
+ break;
+ }
+ break;
+ //
+ // The specified register is Model Specific Register
+ //
+ case Msr:
+ //
+ // If this function is called to restore register setting after INIT
signal,
+ // there is no need to restore MSRs in register table.
+ //
+ if (RegisterTableEntry->ValidBitLength >= 64) {
+ //
+ // If length is not less than 64 bits, then directly write without
reading
+ //
+ AsmWriteMsr64 (
+ RegisterTableEntry->Index,
+ RegisterTableEntry->Value
+ );
+ } else {
+ //
+ // Get lock to avoid Package/Core scope MSRs programming issue in
parallel execution mode
+ // to make sure MSR read/write operation is atomic.
+ //
+ MsrSpinLock = GetMsrSpinLockByIndex (RegisterTableEntry->Index);
+ AcquireSpinLock (MsrSpinLock);
+ //
+ // Set the bit section according to bit start and length
+ //
+ AsmMsrBitFieldWrite64 (
+ RegisterTableEntry->Index,
+ RegisterTableEntry->ValidBitStart,
+ RegisterTableEntry->ValidBitStart +
RegisterTableEntry->ValidBitLength - 1,
+ RegisterTableEntry->Value
+ );
+ ReleaseSpinLock (MsrSpinLock);
+ }
+ break;
+ //
+ // Enable or disable cache
+ //
+ case CacheControl:
+ //
+ // If value of the entry is 0, then disable cache. Otherwise, enable
cache.
+ //
+ if (RegisterTableEntry->Value == 0) {
+ AsmDisableCache ();
+ } else {
+ AsmEnableCache ();
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+/**
+ AP initialization before SMBASE relocation in the S3 boot path.
+**/
+VOID
+EarlyMPRendezvousProcedure (
+ VOID
+ )
+{
+ CPU_REGISTER_TABLE *RegisterTableList;
+ UINT32 InitApicId;
+ UINTN Index;
+
+ LoadMtrrData (mAcpiCpuData.MtrrTable);
+
+ //
+ // Find processor number for this CPU.
+ //
+ RegisterTableList = (CPU_REGISTER_TABLE *) (UINTN)
mAcpiCpuData.PreSmmInitRegisterTable;
+ InitApicId = GetInitialApicId ();
+ for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
+ if (RegisterTableList[Index].InitialApicId == InitApicId) {
+ SetProcessorRegister (&RegisterTableList[Index]);
+ break;
+ }
+ }
+
+ //
+ // Count down the number with lock mechanism.
+ //
+ InterlockedDecrement (&mNumberToFinish);
+}
+
+/**
+ AP initialization after SMBASE relocation in the S3 boot path.
+**/
+VOID
+MPRendezvousProcedure (
+ VOID
+ )
+{
+ CPU_REGISTER_TABLE *RegisterTableList;
+ UINT32 InitApicId;
+ UINTN Index;
+
+ ProgramVirtualWireMode ();
+ DisableLvtInterrupts ();
+
+ RegisterTableList = (CPU_REGISTER_TABLE *) (UINTN)
mAcpiCpuData.RegisterTable;
+ InitApicId = GetInitialApicId ();
+ for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
+ if (RegisterTableList[Index].InitialApicId == InitApicId) {
+ SetProcessorRegister (&RegisterTableList[Index]);
+ break;
+ }
+ }
+
+ //
+ // Count down the number with lock mechanism.
+ //
+ InterlockedDecrement (&mNumberToFinish);
+}
+
+/**
+ Prepares startup vector for APs.
+
+ This function prepares startup vector for APs.
+
+ @param WorkingBuffer The address of the work buffer.
+**/
+VOID
+PrepareApStartupVector (
+ EFI_PHYSICAL_ADDRESS WorkingBuffer
+ )
+{
+ EFI_PHYSICAL_ADDRESS StartupVector;
+ MP_ASSEMBLY_ADDRESS_MAP AddressMap;
+
+ //
+ // Get the address map of startup code for AP,
+ // including code size, and offset of long jump instructions to redirect.
+ //
+ ZeroMem (&AddressMap, sizeof (AddressMap));
+ AsmGetAddressMap (&AddressMap);
+
+ StartupVector = WorkingBuffer;
+
+ //
+ // Copy AP startup code to startup vector, and then redirect the long jump
+ // instructions for mode switching.
+ //
+ CopyMem ((VOID *) (UINTN) StartupVector, AddressMap.RendezvousFunnelAddress,
AddressMap.Size);
+ *(UINT32 *) (UINTN) (StartupVector + AddressMap.FlatJumpOffset + 3) =
(UINT32) (StartupVector + AddressMap.PModeEntryOffset);
+ if (AddressMap.LongJumpOffset != 0) {
+ *(UINT32 *) (UINTN) (StartupVector + AddressMap.LongJumpOffset + 2) =
(UINT32) (StartupVector + AddressMap.LModeEntryOffset);
+ }
+
+ //
+ // Get the start address of exchange data between BSP and AP.
+ //
+ mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (StartupVector +
AddressMap.Size);
+ ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
+
+ CopyMem ((VOID *) (UINTN) &mExchangeInfo->GdtrProfile, (VOID *) (UINTN)
mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));
+ CopyMem ((VOID *) (UINTN) &mExchangeInfo->IdtrProfile, (VOID *) (UINTN)
mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));
+
+ //
+ // Copy AP's GDT, IDT and Machine Check handler from SMRAM to ACPI NVS memory
+ //
+ CopyMem ((VOID *) mExchangeInfo->GdtrProfile.Base, mGdtForAp,
mExchangeInfo->GdtrProfile.Limit + 1);
+ CopyMem ((VOID *) mExchangeInfo->IdtrProfile.Base, mIdtForAp,
mExchangeInfo->IdtrProfile.Limit + 1);
+ CopyMem ((VOID *)(UINTN) mAcpiCpuData.ApMachineCheckHandlerBase,
mMachineCheckHandlerForAp, mAcpiCpuData.ApMachineCheckHandlerSize);
+
+ mExchangeInfo->StackStart = (VOID *) (UINTN) mAcpiCpuData.StackAddress;
+ mExchangeInfo->StackSize = mAcpiCpuData.StackSize;
+ mExchangeInfo->BufferStart = (UINT32) StartupVector;
+ mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());
+}
+
+/**
+ The function is invoked before SMBASE relocation in S3 path to restores CPU
status.
+
+ The function is invoked before SMBASE relocation in S3 path. It does first
time microcode load
+ and restores MTRRs for both BSP and APs.
+
+**/
+VOID
+EarlyInitializeCpu (
+ VOID
+ )
+{
+ CPU_REGISTER_TABLE *RegisterTableList;
+ UINT32 InitApicId;
+ UINTN Index;
+
+ LoadMtrrData (mAcpiCpuData.MtrrTable);
+
+ //
+ // Find processor number for this CPU.
+ //
+ RegisterTableList = (CPU_REGISTER_TABLE *) (UINTN)
mAcpiCpuData.PreSmmInitRegisterTable;
+ InitApicId = GetInitialApicId ();
+ for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
+ if (RegisterTableList[Index].InitialApicId == InitApicId) {
+ SetProcessorRegister (&RegisterTableList[Index]);
+ break;
+ }
+ }
+
+ ProgramVirtualWireMode ();
+
+ PrepareApStartupVector (mAcpiCpuData.StartupVector);
+
+ mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;
+ mExchangeInfo->ApFunction = (VOID *) (UINTN) EarlyMPRendezvousProcedure;
+
+ //
+ // Send INIT IPI - SIPI to all APs
+ //
+ SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);
+
+ while (mNumberToFinish > 0) {
+ CpuPause ();
+ }
+}
+
+/**
+ The function is invoked after SMBASE relocation in S3 path to restores CPU
status.
+
+ The function is invoked after SMBASE relocation in S3 path. It restores
configuration according to
+ data saved by normal boot path for both BSP and APs.
+
+**/
+VOID
+InitializeCpu (
+ VOID
+ )
+{
+ CPU_REGISTER_TABLE *RegisterTableList;
+ UINT32 InitApicId;
+ UINTN Index;
+
+ RegisterTableList = (CPU_REGISTER_TABLE *) (UINTN)
mAcpiCpuData.RegisterTable;
+ InitApicId = GetInitialApicId ();
+ for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
+ if (RegisterTableList[Index].InitialApicId == InitApicId) {
+ SetProcessorRegister (&RegisterTableList[Index]);
+ break;
+ }
+ }
+
+ mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;
+ //
+ // StackStart was updated when APs were waken up in EarlyInitializeCpu.
+ // Re-initialize StackAddress to original beginning address.
+ //
+ mExchangeInfo->StackStart = (VOID *) (UINTN) mAcpiCpuData.StackAddress;
+ mExchangeInfo->ApFunction = (VOID *) (UINTN) MPRendezvousProcedure;
+
+ //
+ // Send INIT IPI - SIPI to all APs
+ //
+ SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);
+
+ while (mNumberToFinish > 0) {
+ CpuPause ();
+ }
+}
Added: branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.c
===================================================================
--- branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.c
(rev 0)
+++ branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.c 2015-11-17
05:04:08 UTC (rev 18840)
@@ -0,0 +1,486 @@
+/** @file
+Implementation of SMM CPU Services Protocol.
+
+Copyright (c) 2011 - 2015, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD
License
+which accompanies this distribution. The full text of the license may be
found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "PiSmmCpuDxeSmm.h"
+
+//
+// SMM CPU Service Protocol instance
+//
+EFI_SMM_CPU_SERVICE_PROTOCOL mSmmCpuService = {
+ SmmGetProcessorInfo,
+ SmmSwitchBsp,
+ SmmAddProcessor,
+ SmmRemoveProcessor,
+ SmmWhoAmI,
+ SmmRegisterExceptionHandler
+};
+
+/**
+ Get Package ID/Core ID/Thread ID of a processor.
+
+ APIC ID must be an initial APIC ID.
+
+ The algorithm below assumes the target system has symmetry across physical
package boundaries
+ with respect to the number of logical processors per package, number of
cores per package.
+
+ @param ApicId APIC ID of the target logical processor.
+ @param Location Returns the processor location information.
+**/
+VOID
+SmmGetProcessorLocation (
+ IN UINT32 ApicId,
+ OUT EFI_CPU_PHYSICAL_LOCATION *Location
+ )
+{
+ UINTN ThreadBits;
+ UINTN CoreBits;
+ UINT32 RegEax;
+ UINT32 RegEbx;
+ UINT32 RegEcx;
+ UINT32 RegEdx;
+ UINT32 MaxCpuIdIndex;
+ UINT32 SubIndex;
+ UINTN LevelType;
+ UINT32 MaxLogicProcessorsPerPackage;
+ UINT32 MaxCoresPerPackage;
+ BOOLEAN TopologyLeafSupported;
+
+ ASSERT (Location != NULL);
+
+ ThreadBits = 0;
+ CoreBits = 0;
+ TopologyLeafSupported = FALSE;
+
+ //
+ // Check if the processor is capable of supporting more than one logical
processor.
+ //
+ AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx);
+ ASSERT ((RegEdx & BIT28) != 0);
+
+ //
+ // Assume three-level mapping of APIC ID: Package:Core:SMT.
+ //
+
+ //
+ // Get the max index of basic CPUID
+ //
+ AsmCpuid (CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL);
+
+ //
+ // If the extended topology enumeration leaf is available, it
+ // is the preferred mechanism for enumerating topology.
+ //
+ if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {
+ AsmCpuidEx (CPUID_EXTENDED_TOPOLOGY, 0, &RegEax, &RegEbx, &RegEcx, NULL);
+ //
+ // If CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for
+ // basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not
+ // supported on that processor.
+ //
+ if ((RegEbx & 0xffff) != 0) {
+ TopologyLeafSupported = TRUE;
+
+ //
+ // Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to
extract
+ // the SMT sub-field of x2APIC ID.
+ //
+ LevelType = (RegEcx >> 8) & 0xff;
+ ASSERT (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT);
+ if ((RegEbx & 0xffff) > 1 ) {
+ ThreadBits = RegEax & 0x1f;
+ } else {
+ //
+ // HT is not supported
+ //
+ ThreadBits = 0;
+ }
+
+ //
+ // Software must not assume any "level type" encoding
+ // value to be related to any sub-leaf index, except sub-leaf 0.
+ //
+ SubIndex = 1;
+ do {
+ AsmCpuidEx (CPUID_EXTENDED_TOPOLOGY, SubIndex, &RegEax, NULL, &RegEcx,
NULL);
+ LevelType = (RegEcx >> 8) & 0xff;
+ if (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE) {
+ CoreBits = (RegEax & 0x1f) - ThreadBits;
+ break;
+ }
+ SubIndex++;
+ } while (LevelType != CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID);
+ }
+ }
+
+ if (!TopologyLeafSupported) {
+ AsmCpuid (CPUID_VERSION_INFO, NULL, &RegEbx, NULL, NULL);
+ MaxLogicProcessorsPerPackage = (RegEbx >> 16) & 0xff;
+ if (MaxCpuIdIndex >= CPUID_CACHE_PARAMS) {
+ AsmCpuidEx (CPUID_CACHE_PARAMS, 0, &RegEax, NULL, NULL, NULL);
+ MaxCoresPerPackage = (RegEax >> 26) + 1;
+ } else {
+ //
+ // Must be a single-core processor.
+ //
+ MaxCoresPerPackage = 1;
+ }
+
+ ThreadBits = (UINTN) (HighBitSet32 (MaxLogicProcessorsPerPackage /
MaxCoresPerPackage - 1) + 1);
+ CoreBits = (UINTN) (HighBitSet32 (MaxCoresPerPackage - 1) + 1);
+ }
+
+ Location->Thread = ApicId & ~((-1) << ThreadBits);
+ Location->Core = (ApicId >> ThreadBits) & ~((-1) << CoreBits);
+ Location->Package = (ApicId >> (ThreadBits+ CoreBits));
+}
+
+/**
+ Gets processor information on the requested processor at the instant this
call is made.
+
+ @param[in] This A pointer to the
EFI_SMM_CPU_SERVICE_PROTOCOL instance.
+ @param[in] ProcessorNumber The handle number of processor.
+ @param[out] ProcessorInfoBuffer A pointer to the buffer where information
for
+ the requested processor is deposited.
+
+ @retval EFI_SUCCESS Processor information was returned.
+ @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
+ ProcessorNumber does not exist in the
platform.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmGetProcessorInfo (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINTN ProcessorNumber,
+ OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
+ )
+{
+ //
+ // Check parameter
+ //
+ if (ProcessorNumber >= mMaxNumberOfCpus || ProcessorInfoBuffer == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (gSmmCpuPrivate->ProcessorInfo[ProcessorNumber].ProcessorId ==
INVALID_APIC_ID) {
+ return EFI_NOT_FOUND;
+ }
+
+ //
+ // Fill in processor information
+ //
+ CopyMem (ProcessorInfoBuffer,
&gSmmCpuPrivate->ProcessorInfo[ProcessorNumber], sizeof
(EFI_PROCESSOR_INFORMATION));
+ return EFI_SUCCESS;
+}
+
+/**
+ This service switches the requested AP to be the BSP since the next SMI.
+
+ @param[in] This A pointer to the EFI_SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param[in] ProcessorNumber The handle number of AP that is to become the
new BSP.
+
+ @retval EFI_SUCCESS BSP will be switched in next SMI.
+ @retval EFI_UNSUPPORTED Switching the BSP or a processor to be
hot-removed is not supported.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+**/
+EFI_STATUS
+EFIAPI
+SmmSwitchBsp (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINTN ProcessorNumber
+ )
+{
+ //
+ // Check parameter
+ //
+ if (ProcessorNumber >= mMaxNumberOfCpus) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (gSmmCpuPrivate->ProcessorInfo[ProcessorNumber].ProcessorId ==
INVALID_APIC_ID) {
+ return EFI_NOT_FOUND;
+ }
+
+ if (gSmmCpuPrivate->Operation[ProcessorNumber] != SmmCpuNone ||
+ gSmst->CurrentlyExecutingCpu == ProcessorNumber) {
+ return EFI_UNSUPPORTED;
+ }
+
+ //
+ // Setting of the BSP for next SMI is pending until all SMI handlers are
finished
+ //
+ gSmmCpuPrivate->Operation[ProcessorNumber] = SmmCpuSwitchBsp;
+ return EFI_SUCCESS;
+}
+
+/**
+ Notify that a processor was hot-added.
+
+ @param[in] This A pointer to the EFI_SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param[in] ProcessorId Local APIC ID of the hot-added processor.
+ @param[out] ProcessorNumber The handle number of the hot-added processor.
+
+ @retval EFI_SUCCESS The hot-addition of the specified processors
was successfully notified.
+ @retval EFI_UNSUPPORTED Hot addition of processor is not supported.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+ @retval EFI_ALREADY_STARTED The processor is already online in the system.
+**/
+EFI_STATUS
+EFIAPI
+SmmAddProcessor (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINT64 ProcessorId,
+ OUT UINTN *ProcessorNumber
+ )
+{
+ UINTN Index;
+
+ if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {
+ return EFI_UNSUPPORTED;
+ }
+
+ //
+ // Check parameter
+ //
+ if (ProcessorNumber == NULL || ProcessorId == INVALID_APIC_ID) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check if the processor already exists
+ //
+
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == ProcessorId) {
+ return EFI_ALREADY_STARTED;
+ }
+ }
+
+ //
+ // Check CPU hot plug data. The CPU RAS handler should have created the
mapping
+ // of the APIC ID to SMBASE.
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (mCpuHotPlugData.ApicId[Index] == ProcessorId &&
+ gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == INVALID_APIC_ID) {
+ gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = ProcessorId;
+ gSmmCpuPrivate->ProcessorInfo[Index].StatusFlag = 0;
+ SmmGetProcessorLocation ((UINT32)ProcessorId,
&gSmmCpuPrivate->ProcessorInfo[Index].Location);
+
+ *ProcessorNumber = Index;
+ gSmmCpuPrivate->Operation[Index] = SmmCpuAdd;
+ return EFI_SUCCESS;
+ }
+ }
+
+ return EFI_INVALID_PARAMETER;
+}
+
+/**
+ Notify that a processor was hot-removed.
+
+ @param[in] This A pointer to the EFI_SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param[in] ProcessorNumber The handle number of the hot-added processor.
+
+ @retval EFI_SUCCESS The hot-removal of the specified processors
was successfully notified.
+ @retval EFI_UNSUPPORTED Hot removal of processor is not supported.
+ @retval EFI_UNSUPPORTED Hot removal of BSP is not supported.
+ @retval EFI_UNSUPPORTED Hot removal of a processor with pending
hot-plug operation is not supported.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+**/
+EFI_STATUS
+EFIAPI
+SmmRemoveProcessor (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINTN ProcessorNumber
+ )
+{
+ if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {
+ return EFI_UNSUPPORTED;
+ }
+
+ //
+ // Check parameter
+ //
+ if (ProcessorNumber >= mMaxNumberOfCpus ||
+ gSmmCpuPrivate->ProcessorInfo[ProcessorNumber].ProcessorId ==
INVALID_APIC_ID) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Can't remove BSP
+ //
+ if (ProcessorNumber ==
gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
+ return EFI_UNSUPPORTED;
+ }
+
+ if (gSmmCpuPrivate->Operation[ProcessorNumber] != SmmCpuNone) {
+ return EFI_UNSUPPORTED;
+ }
+
+ gSmmCpuPrivate->ProcessorInfo[ProcessorNumber].ProcessorId = INVALID_APIC_ID;
+ mCpuHotPlugData.ApicId[ProcessorNumber] = INVALID_APIC_ID;
+
+ //
+ // Removal of the processor from the CPU list is pending until all SMI
handlers are finished
+ //
+ gSmmCpuPrivate->Operation[ProcessorNumber] = SmmCpuRemove;
+ return EFI_SUCCESS;
+}
+
+/**
+ This return the handle number for the calling processor.
+
+ @param[in] This A pointer to the
EFI_SMM_CPU_SERVICE_PROTOCOL instance.
+ @param[out] ProcessorNumber The handle number of currently executing
processor.
+
+ @retval EFI_SUCCESS The current processor handle number was
returned
+ in ProcessorNumber.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmWhoAmI (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ OUT UINTN *ProcessorNumber
+ )
+{
+ UINTN Index;
+ UINT64 ApicId;
+
+ //
+ // Check parameter
+ //
+ if (ProcessorNumber == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ ApicId = GetApicId ();
+
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == ApicId) {
+ *ProcessorNumber = Index;
+ return EFI_SUCCESS;
+ }
+ }
+ //
+ // This should not happen
+ //
+ ASSERT (FALSE);
+ return EFI_NOT_FOUND;
+}
+
+/**
+ Update the SMM CPU list per the pending operation.
+
+ This function is called after return from SMI handlers.
+**/
+VOID
+SmmCpuUpdate (
+ VOID
+ )
+{
+ UINTN Index;
+
+ //
+ // Handle pending BSP switch operations
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (gSmmCpuPrivate->Operation[Index] == SmmCpuSwitchBsp) {
+ gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
+ mSmmMpSyncData->SwitchBsp = TRUE;
+ mSmmMpSyncData->CandidateBsp[Index] = TRUE;
+ }
+ }
+
+ //
+ // Handle pending hot-add operations
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (gSmmCpuPrivate->Operation[Index] == SmmCpuAdd) {
+ gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
+ mNumberOfCpus++;
+ }
+ }
+
+ //
+ // Handle pending hot-remove operations
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (gSmmCpuPrivate->Operation[Index] == SmmCpuRemove) {
+ gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
+ mNumberOfCpus--;
+ }
+ }
+}
+
+/**
+ Register exception handler.
+
+ @param This A pointer to the SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param ExceptionType Defines which interrupt or exception to hook.
Type EFI_EXCEPTION_TYPE and
+ the valid values for this parameter are
defined in EFI_DEBUG_SUPPORT_PROTOCOL
+ of the UEFI 2.0 specification.
+ @param InterruptHandler A pointer to a function of type
EFI_CPU_INTERRUPT_HANDLER
+ that is called when a processor interrupt
occurs.
+ If this parameter is NULL, then the handler
will be uninstalled.
+
+ @retval EFI_SUCCESS The handler for the processor interrupt was
successfully installed or uninstalled.
+ @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
for InterruptType was previously installed.
+ @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
InterruptType was not previously installed.
+ @retval EFI_UNSUPPORTED The interrupt specified by InterruptType is
not supported.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmRegisterExceptionHandler (
+ IN EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN EFI_EXCEPTION_TYPE ExceptionType,
+ IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
+ )
+{
+ return RegisterCpuInterruptHandler (ExceptionType, InterruptHandler);
+}
+
+/**
+ Initialize SMM CPU Services.
+
+ It installs EFI SMM CPU Services Protocol.
+
+ @param ImageHandle The firmware allocated handle for the EFI image.
+
+ @retval EFI_SUCCESS EFI SMM CPU Services Protocol was installed
successfully.
+**/
+EFI_STATUS
+InitializeSmmCpuServices (
+ IN EFI_HANDLE Handle
+ )
+{
+ EFI_STATUS Status;
+
+ Status = gSmst->SmmInstallProtocolInterface (
+ &Handle,
+ &gEfiSmmCpuServiceProtocolGuid,
+ EFI_NATIVE_INTERFACE,
+ &mSmmCpuService
+ );
+ ASSERT_EFI_ERROR (Status);
+ return Status;
+}
+
Added: branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.h
===================================================================
--- branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.h
(rev 0)
+++ branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/CpuService.h 2015-11-17
05:04:08 UTC (rev 18840)
@@ -0,0 +1,181 @@
+/** @file
+Include file for SMM CPU Services protocol implementation.
+
+Copyright (c) 2011 - 2015, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD
License
+which accompanies this distribution. The full text of the license may be
found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#ifndef _CPU_SERVICE_H_
+#define _CPU_SERVICE_H_
+
+typedef enum {
+ SmmCpuNone,
+ SmmCpuAdd,
+ SmmCpuRemove,
+ SmmCpuSwitchBsp
+} SMM_CPU_OPERATION;
+
+//
+// SMM CPU Service Protocol function prototypes.
+//
+
+/**
+ Gets processor information on the requested processor at the instant this
call is made.
+
+ @param[in] This A pointer to the
EFI_SMM_CPU_SERVICE_PROTOCOL instance.
+ @param[in] ProcessorNumber The handle number of processor.
+ @param[out] ProcessorInfoBuffer A pointer to the buffer where information
for
+ the requested processor is deposited.
+
+ @retval EFI_SUCCESS Processor information was returned.
+ @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
+ ProcessorNumber does not exist in the
platform.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmGetProcessorInfo (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINTN ProcessorNumber,
+ OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
+ );
+
+/**
+ This service switches the requested AP to be the BSP since the next SMI.
+
+ @param[in] This A pointer to the EFI_SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param[in] ProcessorNumber The handle number of AP that is to become the
new BSP.
+
+ @retval EFI_SUCCESS BSP will be switched in next SMI.
+ @retval EFI_UNSUPPORTED Switching the BSP or a processor to be
hot-removed is not supported.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+**/
+EFI_STATUS
+EFIAPI
+SmmSwitchBsp (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINTN ProcessorNumber
+ );
+
+/**
+ Notify that a processor was hot-added.
+
+ @param[in] This A pointer to the EFI_SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param[in] ProcessorId Local APIC ID of the hot-added processor.
+ @param[out] ProcessorNumber The handle number of the hot-added processor.
+
+ @retval EFI_SUCCESS The hot-addition of the specified processors
was successfully notified.
+ @retval EFI_UNSUPPORTED Hot addition of processor is not supported.
+ @retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+ @retval EFI_ALREADY_STARTED The processor is already online in the system.
+**/
+EFI_STATUS
+EFIAPI
+SmmAddProcessor (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINT64 ProcessorId,
+ OUT UINTN *ProcessorNumber
+ );
+
+/**
+ Notify that a processor was hot-removed.
+
+ @param[in] This A pointer to the EFI_SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param[in] ProcessorNumber The handle number of the hot-added processor.
+
+ @retval EFI_SUCCESS The hot-removal of the specified processors
was successfully notified.
+ @retval EFI_UNSUPPORTED Hot removal of processor is not supported.
+ @retval EFI_UNSUPPORTED Hot removal of BSP is not supported.
+ @retval EFI_UNSUPPORTED Hot removal of a processor with pending
hot-plug operation is not supported.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is invalid.
+**/
+EFI_STATUS
+EFIAPI
+SmmRemoveProcessor (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN UINTN ProcessorNumber
+ );
+
+/**
+ This return the handle number for the calling processor.
+
+ @param[in] This A pointer to the
EFI_SMM_CPU_SERVICE_PROTOCOL instance.
+ @param[out] ProcessorNumber The handle number of currently executing
processor.
+
+ @retval EFI_SUCCESS The current processor handle number was
returned
+ in ProcessorNumber.
+ @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmWhoAmI (
+ IN CONST EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ OUT UINTN *ProcessorNumber
+ );
+
+/**
+ Register exception handler.
+
+ @param This A pointer to the SMM_CPU_SERVICE_PROTOCOL
instance.
+ @param ExceptionType Defines which interrupt or exception to hook.
Type EFI_EXCEPTION_TYPE and
+ the valid values for this parameter are
defined in EFI_DEBUG_SUPPORT_PROTOCOL
+ of the UEFI 2.0 specification.
+ @param InterruptHandler A pointer to a function of type
EFI_CPU_INTERRUPT_HANDLER
+ that is called when a processor interrupt
occurs.
+ If this parameter is NULL, then the handler
will be uninstalled.
+
+ @retval EFI_SUCCESS The handler for the processor interrupt was
successfully installed or uninstalled.
+ @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
for InterruptType was previously installed.
+ @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
InterruptType was not previously installed.
+ @retval EFI_UNSUPPORTED The interrupt specified by InterruptType is
not supported.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmRegisterExceptionHandler (
+ IN EFI_SMM_CPU_SERVICE_PROTOCOL *This,
+ IN EFI_EXCEPTION_TYPE ExceptionType,
+ IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
+ );
+
+//
+// Internal function prototypes
+//
+
+/**
+ Update the SMM CPU list per the pending operation.
+
+ This function is called after return from SMI handlers.
+**/
+VOID
+SmmCpuUpdate (
+ VOID
+ );
+
+/**
+ Initialize SMM CPU Services.
+
+ It installs EFI SMM CPU Services Protocol.
+
+ @param ImageHandle The firmware allocated handle for the EFI image.
+
+ @retval EFI_SUCCESS EFI SMM CPU Services Protocol was installed
successfully.
+**/
+EFI_STATUS
+InitializeSmmCpuServices (
+ IN EFI_HANDLE Handle
+ );
+
+#endif
Added: branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
===================================================================
--- branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
(rev 0)
+++ branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c 2015-11-17
05:04:08 UTC (rev 18840)
@@ -0,0 +1,1327 @@
+/** @file
+SMM MP service implementation
+
+Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD
License
+which accompanies this distribution. The full text of the license may be
found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "PiSmmCpuDxeSmm.h"
+
+//
+// Slots for all MTRR( FIXED MTRR + VARIABLE MTRR +
MTRR_LIB_IA32_MTRR_DEF_TYPE)
+//
+UINT64
gSmiMtrrs[MTRR_NUMBER_OF_FIXED_MTRR + 2 * MTRR_NUMBER_OF_VARIABLE_MTRR + 1];
+UINT64 gPhyMask;
+SMM_DISPATCHER_MP_SYNC_DATA *mSmmMpSyncData = NULL;
+UINTN mSmmMpSyncDataSize;
+
+/**
+ Performs an atomic compare exchange operation to get semaphore.
+ The compare exchange operation must be performed using
+ MP safe mechanisms.
+
+ @param Sem IN: 32-bit unsigned integer
+ OUT: original integer - 1
+ @return Original integer - 1
+
+**/
+UINT32
+WaitForSemaphore (
+ IN OUT volatile UINT32 *Sem
+ )
+{
+ UINT32 Value;
+
+ do {
+ Value = *Sem;
+ } while (Value == 0 ||
+ InterlockedCompareExchange32 (
+ (UINT32*)Sem,
+ Value,
+ Value - 1
+ ) != Value);
+ return Value - 1;
+}
+
+
+/**
+ Performs an atomic compare exchange operation to release semaphore.
+ The compare exchange operation must be performed using
+ MP safe mechanisms.
+
+ @param Sem IN: 32-bit unsigned integer
+ OUT: original integer + 1
+ @return Original integer + 1
+
+**/
+UINT32
+ReleaseSemaphore (
+ IN OUT volatile UINT32 *Sem
+ )
+{
+ UINT32 Value;
+
+ do {
+ Value = *Sem;
+ } while (Value + 1 != 0 &&
+ InterlockedCompareExchange32 (
+ (UINT32*)Sem,
+ Value,
+ Value + 1
+ ) != Value);
+ return Value + 1;
+}
+
+/**
+ Performs an atomic compare exchange operation to lock semaphore.
+ The compare exchange operation must be performed using
+ MP safe mechanisms.
+
+ @param Sem IN: 32-bit unsigned integer
+ OUT: -1
+ @return Original integer
+
+**/
+UINT32
+LockdownSemaphore (
+ IN OUT volatile UINT32 *Sem
+ )
+{
+ UINT32 Value;
+
+ do {
+ Value = *Sem;
+ } while (InterlockedCompareExchange32 (
+ (UINT32*)Sem,
+ Value, (UINT32)-1
+ ) != Value);
+ return Value;
+}
+
+/**
+ Wait all APs to performs an atomic compare exchange operation to release
semaphore.
+
+ @param NumberOfAPs AP number
+
+**/
+VOID
+WaitForAllAPs (
+ IN UINTN NumberOfAPs
+ )
+{
+ UINTN BspIndex;
+
+ BspIndex = mSmmMpSyncData->BspIndex;
+ while (NumberOfAPs-- > 0) {
+ WaitForSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+ }
+}
+
+/**
+ Performs an atomic compare exchange operation to release semaphore
+ for each AP.
+
+**/
+VOID
+ReleaseAllAPs (
+ VOID
+ )
+{
+ UINTN Index;
+ UINTN BspIndex;
+
+ BspIndex = mSmmMpSyncData->BspIndex;
+ for (Index = mMaxNumberOfCpus; Index-- > 0;) {
+ if (Index != BspIndex && mSmmMpSyncData->CpuData[Index].Present) {
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[Index].Run);
+ }
+ }
+}
+
+/**
+ Checks if all CPUs (with certain exceptions) have checked in for this SMI run
+
+ @param Exceptions CPU Arrival exception flags.
+
+ @retval TRUE if all CPUs the have checked in.
+ @retval FALSE if at least one Normal AP hasn't checked in.
+
+**/
+BOOLEAN
+AllCpusInSmmWithExceptions (
+ SMM_CPU_ARRIVAL_EXCEPTIONS Exceptions
+ )
+{
+ UINTN Index;
+ SMM_CPU_DATA_BLOCK *CpuData;
+ EFI_PROCESSOR_INFORMATION *ProcessorInfo;
+
+ ASSERT (mSmmMpSyncData->Counter <= mNumberOfCpus);
+
+ if (mSmmMpSyncData->Counter == mNumberOfCpus) {
+ return TRUE;
+ }
+
+ CpuData = mSmmMpSyncData->CpuData;
+ ProcessorInfo = gSmmCpuPrivate->ProcessorInfo;
+ for (Index = mMaxNumberOfCpus; Index-- > 0;) {
+ if (!CpuData[Index].Present && ProcessorInfo[Index].ProcessorId !=
INVALID_APIC_ID) {
+ if (((Exceptions & ARRIVAL_EXCEPTION_DELAYED) != 0) &&
SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed) != 0) {
+ continue;
+ }
+ if (((Exceptions & ARRIVAL_EXCEPTION_BLOCKED) != 0) &&
SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked) != 0) {
+ continue;
+ }
+ if (((Exceptions & ARRIVAL_EXCEPTION_SMI_DISABLED) != 0) &&
SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable) != 0) {
+ continue;
+ }
+ return FALSE;
+ }
+ }
+
+
+ return TRUE;
+}
+
+
+/**
+ Given timeout constraint, wait for all APs to arrive, and insure when this
function returns, no AP will execute normal mode code before
+ entering SMM, except SMI disabled APs.
+
+**/
+VOID
+SmmWaitForApArrival (
+ VOID
+ )
+{
+ UINT64 Timer;
+ UINTN Index;
+
+ ASSERT (mSmmMpSyncData->Counter <= mNumberOfCpus);
+
+ //
+ // Platform implementor should choose a timeout value appropriately:
+ // - The timeout value should balance the SMM time constrains and the
likelihood that delayed CPUs are excluded in the SMM run. Note
+ // the SMI Handlers must ALWAYS take into account the cases that not all
APs are available in an SMI run.
+ // - The timeout value must, in the case of 2nd timeout, be at least long
enough to give time for all APs to receive the SMI IPI
+ // and either enter SMM or buffer the SMI, to insure there is no CPU
running normal mode code when SMI handling starts. This will
+ // be TRUE even if a blocked CPU is brought out of the blocked state by a
normal mode CPU (before the normal mode CPU received the
+ // SMI IPI), because with a buffered SMI, and CPU will enter SMM
immediately after it is brought out of the blocked state.
+ // - The timeout value must be longer than longest possible IO operation in
the system
+ //
+
+ //
+ // Sync with APs 1st timeout
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED |
ARRIVAL_EXCEPTION_SMI_DISABLED );
+ ) {
+ CpuPause ();
+ }
+
+ //
+ // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be
sent to ALL none present APs,
+ // because:
+ // a) Delayed AP may have just come out of the delayed state. Blocked AP may
have just been brought out of blocked state by some AP running
+ // normal mode code. These APs need to be guaranteed to have an SMI
pending to insure that once they are out of delayed / blocked state, they
+ // enter SMI immediately without executing instructions in normal mode.
Note traditional flow requires there are no APs doing normal mode
+ // work while SMI handling is on-going.
+ // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after
this SMM run.
+ // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for
traditional flow, because a processor in SMI-disabled state
+ // will execute normal mode code, which breaks the traditional SMI
handlers' assumption that no APs are doing normal
+ // mode work while SMI handling is on-going.
+ // d) We don't add code to check SMI disabling status to skip sending IPI to
SMI disabled APs, because:
+ // - In traditional flow, SMI disabling is discouraged.
+ // - In relaxed flow, CheckApArrival() will check SMI disabling status
before calling this function.
+ // In both cases, adding SMI-disabling checking code increases overhead.
+ //
+ if (mSmmMpSyncData->Counter < mNumberOfCpus) {
+ //
+ // Send SMI IPIs to bring outside processors in
+ //
+ for (Index = mMaxNumberOfCpus; Index-- > 0;) {
+ if (!mSmmMpSyncData->CpuData[Index].Present &&
gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
+ SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
+ }
+ }
+
+ //
+ // Sync with APs 2nd timeout.
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED |
ARRIVAL_EXCEPTION_SMI_DISABLED );
+ ) {
+ CpuPause ();
+ }
+ }
+
+ return;
+}
+
+
+/**
+ Replace OS MTRR's with SMI MTRR's.
+
+ @param CpuIndex Processor Index
+
+**/
+VOID
+ReplaceOSMtrrs (
+ IN UINTN CpuIndex
+ )
+{
+ PROCESSOR_SMM_DESCRIPTOR *Psd;
+ UINT64 *SmiMtrrs;
+ MTRR_SETTINGS *BiosMtrr;
+
+ Psd = (PROCESSOR_SMM_DESCRIPTOR*)(mCpuHotPlugData.SmBase[CpuIndex] +
SMM_PSD_OFFSET);
+ SmiMtrrs = (UINT64*)(UINTN)Psd->MtrrBaseMaskPtr;
+
+ SmmCpuFeaturesDisableSmrr ();
+
+ //
+ // Replace all MTRRs registers
+ //
+ BiosMtrr = (MTRR_SETTINGS*)SmiMtrrs;
+ MtrrSetAllMtrrs(BiosMtrr);
+}
+
+/**
+ SMI handler for BSP.
+
+ @param CpuIndex BSP processor Index
+ @param SyncMode SMM MP sync mode
+
+**/
+VOID
+BSPHandler (
+ IN UINTN CpuIndex,
+ IN SMM_CPU_SYNC_MODE SyncMode
+ )
+{
+ UINTN Index;
+ MTRR_SETTINGS Mtrrs;
+ UINTN ApCount;
+ BOOLEAN ClearTopLevelSmiResult;
+ UINTN PresentCount;
+
+ ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);
+ ApCount = 0;
+
+ //
+ // Flag BSP's presence
+ //
+ mSmmMpSyncData->InsideSmm = TRUE;
+
+ //
+ // Initialize Debug Agent to start source level debug in BSP handler
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);
+
+ //
+ // Mark this processor's presence
+ //
+ mSmmMpSyncData->CpuData[CpuIndex].Present = TRUE;
+
+ //
+ // Clear platform top level SMI status bit before calling SMI handlers. If
+ // we cleared it after SMI handlers are run, we would miss the SMI that
+ // occurs after SMI handlers are done and before SMI status bit is cleared.
+ //
+ ClearTopLevelSmiResult = ClearTopLevelSmiStatus();
+ ASSERT (ClearTopLevelSmiResult == TRUE);
+
+ //
+ // Set running processor index
+ //
+ gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;
+
+ //
+ // If Traditional Sync Mode or need to configure MTRRs: gather all available
APs.
+ //
+ if (SyncMode == SmmCpuSyncModeTradition ||
SmmCpuFeaturesNeedConfigureMtrrs()) {
+
+ //
+ // Wait for APs to arrive
+ //
+ SmmWaitForApArrival();
+
+ //
+ // Lock the counter down and retrieve the number of APs
+ //
+ mSmmMpSyncData->AllCpusInSync = TRUE;
+ ApCount = LockdownSemaphore (&mSmmMpSyncData->Counter) - 1;
+
+ //
+ // Wait for all APs to get ready for programming MTRRs
+ //
+ WaitForAllAPs (ApCount);
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Signal all APs it's time for backup MTRRs
+ //
+ ReleaseAllAPs ();
+
+ //
+ // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
+ // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been
set
+ // to a large enough value to avoid this situation.
+ // Note: For HT capable CPUs, threads within a core share the same set
of MTRRs.
+ // We do the backup first and then set MTRR to avoid race condition for
threads
+ // in the same core.
+ //
+ MtrrGetAllMtrrs(&Mtrrs);
+
+ //
+ // Wait for all APs to complete their MTRR saving
+ //
+ WaitForAllAPs (ApCount);
+
+ //
+ // Let all processors program SMM MTRRs together
+ //
+ ReleaseAllAPs ();
+
+ //
+ // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
+ // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been
set
+ // to a large enough value to avoid this situation.
+ //
+ ReplaceOSMtrrs (CpuIndex);
+
+ //
+ // Wait for all APs to complete their MTRR programming
+ //
+ WaitForAllAPs (ApCount);
+ }
+ }
+
+ //
+ // The BUSY lock is initialized to Acquired state
+ //
+ AcquireSpinLockOrFail (&mSmmMpSyncData->CpuData[CpuIndex].Busy);
+
+ //
+ // Restore SMM Configuration in S3 boot path.
+ //
+ if (mRestoreSmmConfigurationInS3) {
+ //
+ // Configure SMM Code Access Check feature if available.
+ //
+ ConfigSmmCodeAccessCheck ();
+ mRestoreSmmConfigurationInS3 = FALSE;
+ }
+
+ //
+ // Invoke SMM Foundation EntryPoint with the processor information context.
+ //
+ gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);
+
+ //
+ // Make sure all APs have completed their pending none-block tasks
+ //
+ for (Index = mMaxNumberOfCpus; Index-- > 0;) {
+ if (Index != CpuIndex && mSmmMpSyncData->CpuData[Index].Present) {
+ AcquireSpinLock (&mSmmMpSyncData->CpuData[Index].Busy);
+ ReleaseSpinLock (&mSmmMpSyncData->CpuData[Index].Busy);;
+ }
+ }
+
+ //
+ // Perform the remaining tasks
+ //
+ PerformRemainingTasks ();
+
+ //
+ // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers
are done, and
+ // make those APs to exit SMI synchronously. APs which arrive later will be
excluded and
+ // will run through freely.
+ //
+ if (SyncMode != SmmCpuSyncModeTradition &&
!SmmCpuFeaturesNeedConfigureMtrrs()) {
+
+ //
+ // Lock the counter down and retrieve the number of APs
+ //
+ mSmmMpSyncData->AllCpusInSync = TRUE;
+ ApCount = LockdownSemaphore (&mSmmMpSyncData->Counter) - 1;
+ //
+ // Make sure all APs have their Present flag set
+ //
+ while (TRUE) {
+ PresentCount = 0;
+ for (Index = mMaxNumberOfCpus; Index-- > 0;) {
+ if (mSmmMpSyncData->CpuData[Index].Present) {
+ PresentCount ++;
+ }
+ }
+ if (PresentCount > ApCount) {
+ break;
+ }
+ }
+ }
+
+ //
+ // Notify all APs to exit
+ //
+ mSmmMpSyncData->InsideSmm = FALSE;
+ ReleaseAllAPs ();
+
+ //
+ // Wait for all APs to complete their pending tasks
+ //
+ WaitForAllAPs (ApCount);
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Signal APs to restore MTRRs
+ //
+ ReleaseAllAPs ();
+
+ //
+ // Restore OS MTRRs
+ //
+ SmmCpuFeaturesReenableSmrr ();
+ MtrrSetAllMtrrs(&Mtrrs);
+
+ //
+ // Wait for all APs to complete MTRR programming
+ //
+ WaitForAllAPs (ApCount);
+ }
+
+ //
+ // Stop source level debug in BSP handler, the code below will not be
+ // debugged.
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);
+
+ //
+ // Signal APs to Reset states/semaphore for this processor
+ //
+ ReleaseAllAPs ();
+
+ //
+ // Perform pending operations for hot-plug
+ //
+ SmmCpuUpdate ();
+
+ //
+ // Clear the Present flag of BSP
+ //
+ mSmmMpSyncData->CpuData[CpuIndex].Present = FALSE;
+
+ //
+ // Gather APs to exit SMM synchronously. Note the Present flag is cleared by
now but
+ // WaitForAllAps does not depend on the Present flag.
+ //
+ WaitForAllAPs (ApCount);
+
+ //
+ // Reset BspIndex to -1, meaning BSP has not been elected.
+ //
+ if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
+ mSmmMpSyncData->BspIndex = (UINT32)-1;
+ }
+
+ //
+ // Allow APs to check in from this point on
+ //
+ mSmmMpSyncData->Counter = 0;
+ mSmmMpSyncData->AllCpusInSync = FALSE;
+}
+
+/**
+ SMI handler for AP.
+
+ @param CpuIndex AP processor Index.
+ @param ValidSmi Indicates that current SMI is a valid SMI or not.
+ @param SyncMode SMM MP sync mode.
+
+**/
+VOID
+APHandler (
+ IN UINTN CpuIndex,
+ IN BOOLEAN ValidSmi,
+ IN SMM_CPU_SYNC_MODE SyncMode
+ )
+{
+ UINT64 Timer;
+ UINTN BspIndex;
+ MTRR_SETTINGS Mtrrs;
+
+ //
+ // Timeout BSP
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !mSmmMpSyncData->InsideSmm;
+ ) {
+ CpuPause ();
+ }
+
+ if (!mSmmMpSyncData->InsideSmm) {
+ //
+ // BSP timeout in the first round
+ //
+ if (mSmmMpSyncData->BspIndex != -1) {
+ //
+ // BSP Index is known
+ //
+ BspIndex = mSmmMpSyncData->BspIndex;
+ ASSERT (CpuIndex != BspIndex);
+
+ //
+ // Send SMI IPI to bring BSP in
+ //
+ SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);
+
+ //
+ // Now clock BSP for the 2nd time
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !mSmmMpSyncData->InsideSmm;
+ ) {
+ CpuPause ();
+ }
+
+ if (!mSmmMpSyncData->InsideSmm) {
+ //
+ // Give up since BSP is unable to enter SMM
+ // and signal the completion of this AP
+ WaitForSemaphore (&mSmmMpSyncData->Counter);
+ return;
+ }
+ } else {
+ //
+ // Don't know BSP index. Give up without sending IPI to BSP.
+ //
+ WaitForSemaphore (&mSmmMpSyncData->Counter);
+ return;
+ }
+ }
+
+ //
+ // BSP is available
+ //
+ BspIndex = mSmmMpSyncData->BspIndex;
+ ASSERT (CpuIndex != BspIndex);
+
+ //
+ // Mark this processor's presence
+ //
+ mSmmMpSyncData->CpuData[CpuIndex].Present = TRUE;
+
+ if (SyncMode == SmmCpuSyncModeTradition ||
SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Notify BSP of arrival at this point
+ //
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+ }
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Wait for the signal from BSP to backup MTRRs
+ //
+ WaitForSemaphore (&mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Backup OS MTRRs
+ //
+ MtrrGetAllMtrrs(&Mtrrs);
+
+ //
+ // Signal BSP the completion of this AP
+ //
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+
+ //
+ // Wait for BSP's signal to program MTRRs
+ //
+ WaitForSemaphore (&mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Replace OS MTRRs with SMI MTRRs
+ //
+ ReplaceOSMtrrs (CpuIndex);
+
+ //
+ // Signal BSP the completion of this AP
+ //
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+ }
+
+ while (TRUE) {
+ //
+ // Wait for something to happen
+ //
+ WaitForSemaphore (&mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Check if BSP wants to exit SMM
+ //
+ if (!mSmmMpSyncData->InsideSmm) {
+ break;
+ }
+
+ //
+ // BUSY should be acquired by SmmStartupThisAp()
+ //
+ ASSERT (
+ !AcquireSpinLockOrFail (&mSmmMpSyncData->CpuData[CpuIndex].Busy)
+ );
+
+ //
+ // Invoke the scheduled procedure
+ //
+ (*mSmmMpSyncData->CpuData[CpuIndex].Procedure) (
+ (VOID*)mSmmMpSyncData->CpuData[CpuIndex].Parameter
+ );
+
+ //
+ // Release BUSY
+ //
+ ReleaseSpinLock (&mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ }
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Notify BSP the readiness of this AP to program MTRRs
+ //
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+
+ //
+ // Wait for the signal from BSP to program MTRRs
+ //
+ WaitForSemaphore (&mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Restore OS MTRRs
+ //
+ SmmCpuFeaturesReenableSmrr ();
+ MtrrSetAllMtrrs(&Mtrrs);
+ }
+
+ //
+ // Notify BSP the readiness of this AP to Reset states/semaphore for this
processor
+ //
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+
+ //
+ // Wait for the signal from BSP to Reset states/semaphore for this processor
+ //
+ WaitForSemaphore (&mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Reset states/semaphore for this processor
+ //
+ mSmmMpSyncData->CpuData[CpuIndex].Present = FALSE;
+
+ //
+ // Notify BSP the readiness of this AP to exit SMM
+ //
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[BspIndex].Run);
+
+}
+
+/**
+ Create 4G PageTable in SMRAM.
+
+ @param ExtraPages Additional page numbers besides for 4G
memory
+ @return PageTable Address
+
+**/
+UINT32
+Gen4GPageTable (
+ IN UINTN ExtraPages
+ )
+{
+ VOID *PageTable;
+ UINTN Index;
+ UINT64 *Pte;
+ UINTN PagesNeeded;
+ UINTN Low2MBoundary;
+ UINTN High2MBoundary;
+ UINTN Pages;
+ UINTN GuardPage;
+ UINT64 *Pdpte;
+ UINTN PageIndex;
+ UINTN PageAddress;
+
+ Low2MBoundary = 0;
+ High2MBoundary = 0;
+ PagesNeeded = 0;
+ if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ //
+ // Add one more page for known good stack, then find the lower 2MB aligned
address.
+ //
+ Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);
+ //
+ // Add two more pages for known good stack and stack guard page,
+ // then find the lower 2MB aligned address.
+ //
+ High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize + EFI_PAGE_SIZE * 2) &
~(SIZE_2MB-1);
+ PagesNeeded = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;
+ }
+ //
+ // Allocate the page table
+ //
+ PageTable = AllocatePages (ExtraPages + 5 + PagesNeeded);
+ ASSERT (PageTable != NULL);
+
+ PageTable = (VOID *)((UINTN)PageTable + EFI_PAGES_TO_SIZE (ExtraPages));
+ Pte = (UINT64*)PageTable;
+
+ //
+ // Zero out all page table entries first
+ //
+ ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));
+
+ //
+ // Set Page Directory Pointers
+ //
+ for (Index = 0; Index < 4; Index++) {
+ Pte[Index] = (UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1) + IA32_PG_P;
+ }
+ Pte += EFI_PAGE_SIZE / sizeof (*Pte);
+
+ //
+ // Fill in Page Directory Entries
+ //
+ for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {
+ Pte[Index] = (Index << 21) + IA32_PG_PS + IA32_PG_RW + IA32_PG_P;
+ }
+
+ if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ Pages = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);
+ GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;
+ Pdpte = (UINT64*)PageTable;
+ for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex +=
SIZE_2MB) {
+ Pte = (UINT64*)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)]
& ~(EFI_PAGE_SIZE - 1));
+ Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages +
IA32_PG_RW + IA32_PG_P;
+ //
+ // Fill in Page Table Entries
+ //
+ Pte = (UINT64*)Pages;
+ PageAddress = PageIndex;
+ for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
+ if (PageAddress == GuardPage) {
+ //
+ // Mark the guard page as non-present
+ //
+ Pte[Index] = PageAddress;
+ GuardPage += mSmmStackSize;
+ if (GuardPage > mSmmStackArrayEnd) {
+ GuardPage = 0;
+ }
+ } else {
+ Pte[Index] = PageAddress + IA32_PG_RW + IA32_PG_P;
+ }
+ PageAddress+= EFI_PAGE_SIZE;
+ }
+ Pages += EFI_PAGE_SIZE;
+ }
+ }
+
+ return (UINT32)(UINTN)PageTable;
+}
+
+/**
+ Set memory cache ability.
+
+ @param PageTable PageTable Address
+ @param Address Memory Address to change cache ability
+ @param Cacheability Cache ability to set
+
+**/
+VOID
+SetCacheability (
+ IN UINT64 *PageTable,
+ IN UINTN Address,
+ IN UINT8 Cacheability
+ )
+{
+ UINTN PTIndex;
+ VOID *NewPageTableAddress;
+ UINT64 *NewPageTable;
+ UINTN Index;
+
+ ASSERT ((Address & EFI_PAGE_MASK) == 0);
+
+ if (sizeof (UINTN) == sizeof (UINT64)) {
+ PTIndex = (UINTN)RShiftU64 (Address, 39) & 0x1ff;
+ ASSERT (PageTable[PTIndex] & IA32_PG_P);
+ PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & gPhyMask);
+ }
+
+ PTIndex = (UINTN)RShiftU64 (Address, 30) & 0x1ff;
+ ASSERT (PageTable[PTIndex] & IA32_PG_P);
+ PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & gPhyMask);
+
+ //
+ // A perfect implementation should check the original cacheability with the
+ // one being set, and break a 2M page entry into pieces only when they
+ // disagreed.
+ //
+ PTIndex = (UINTN)RShiftU64 (Address, 21) & 0x1ff;
+ if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
+ //
+ // Allocate a page from SMRAM
+ //
+ NewPageTableAddress = AllocatePages (1);
+ ASSERT (NewPageTableAddress != NULL);
+
+ NewPageTable = (UINT64 *)NewPageTableAddress;
+
+ for (Index = 0; Index < 0x200; Index++) {
+ NewPageTable[Index] = PageTable[PTIndex];
+ if ((NewPageTable[Index] & IA32_PG_PAT_2M) != 0) {
+ NewPageTable[Index] &= ~((UINT64)IA32_PG_PAT_2M);
+ NewPageTable[Index] |= (UINT64)IA32_PG_PAT_4K;
+ }
+ NewPageTable[Index] |= (UINT64)(Index << EFI_PAGE_SHIFT);
+ }
+
+ PageTable[PTIndex] = ((UINTN)NewPageTableAddress & gPhyMask) | IA32_PG_P;
+ }
+
+ ASSERT (PageTable[PTIndex] & IA32_PG_P);
+ PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & gPhyMask);
+
+ PTIndex = (UINTN)RShiftU64 (Address, 12) & 0x1ff;
+ ASSERT (PageTable[PTIndex] & IA32_PG_P);
+ PageTable[PTIndex] &= ~((UINT64)((IA32_PG_PAT_4K | IA32_PG_CD |
IA32_PG_WT)));
+ PageTable[PTIndex] |= (UINT64)Cacheability;
+}
+
+
+/**
+ Schedule a procedure to run on the specified CPU.
+
+ @param Procedure The address of the procedure to run
+ @param CpuIndex Target CPU Index
+ @param ProcArguments The parameter to pass to the procedure
+
+ @retval EFI_INVALID_PARAMETER CpuNumber not valid
+ @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter
SMM
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
+ @retval EFI_SUCCESS The procedure has been successfully
scheduled
+
+**/
+EFI_STATUS
+EFIAPI
+SmmStartupThisAp (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN UINTN CpuIndex,
+ IN OUT VOID *ProcArguments OPTIONAL
+ )
+{
+ if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus ||
+ CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu ||
+ !mSmmMpSyncData->CpuData[CpuIndex].Present ||
+ gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove ||
+ !AcquireSpinLockOrFail (&mSmmMpSyncData->CpuData[CpuIndex].Busy)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;
+ mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;
+ ReleaseSemaphore (&mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ if (FeaturePcdGet (PcdCpuSmmBlockStartupThisAp)) {
+ AcquireSpinLock (&mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ ReleaseSpinLock (&mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ }
+ return EFI_SUCCESS;
+}
+
+/**
+ C function for SMI entry, each processor comes here upon SMI trigger.
+
+ @param CpuIndex CPU Index
+
+**/
+VOID
+EFIAPI
+SmiRendezvous (
+ IN UINTN CpuIndex
+ )
+{
+ EFI_STATUS Status;
+ BOOLEAN ValidSmi;
+ BOOLEAN IsBsp;
+ BOOLEAN BspInProgress;
+ UINTN Index;
+ UINTN Cr2;
+
+ //
+ // Save Cr2 because Page Fault exception in SMM may override its value
+ //
+ Cr2 = AsmReadCr2 ();
+
+ //
+ // Perform CPU specific entry hooks
+ //
+ SmmCpuFeaturesRendezvousEntry (CpuIndex);
+
+ //
+ // Determine if this is a valid SMI
+ //
+ ValidSmi = PlatformValidSmi();
+
+ //
+ // Determine if BSP has been already in progress. Note this must be checked
after
+ // ValidSmi because BSP may clear a valid SMI source after checking in.
+ //
+ BspInProgress = mSmmMpSyncData->InsideSmm;
+
+ if (!BspInProgress && !ValidSmi) {
+ //
+ // If we reach here, it means when we sampled the ValidSmi flag, SMI
status had not
+ // been cleared by BSP in a new SMI run (so we have a truly invalid SMI),
or SMI
+ // status had been cleared by BSP and an existing SMI run has almost
ended. (Note
+ // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In
both cases, there
+ // is nothing we need to do.
+ //
+ goto Exit;
+ } else {
+ //
+ // Signal presence of this processor
+ //
+ if (ReleaseSemaphore (&mSmmMpSyncData->Counter) == 0) {
+ //
+ // BSP has already ended the synchronization, so QUIT!!!
+ //
+
+ //
+ // Wait for BSP's signal to finish SMI
+ //
+ while (mSmmMpSyncData->AllCpusInSync) {
+ CpuPause ();
+ }
+ goto Exit;
+ } else {
+
+ //
+ // The BUSY lock is initialized to Released state.
+ // This needs to be done early enough to be ready for BSP's
SmmStartupThisAp() call.
+ // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called
immediately
+ // after AP's present flag is detected.
+ //
+ InitializeSpinLock (&mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ }
+
+ //
+ // Try to enable NX
+ //
+ if (mXdSupported) {
+ ActivateXd ();
+ }
+
+ if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
+ ActivateSmmProfile (CpuIndex);
+ }
+
+ if (BspInProgress) {
+ //
+ // BSP has been elected. Follow AP path, regardless of ValidSmi flag
+ // as BSP may have cleared the SMI status
+ //
+ APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
+ } else {
+ //
+ // We have a valid SMI
+ //
+
+ //
+ // Elect BSP
+ //
+ IsBsp = FALSE;
+ if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
+ if (!mSmmMpSyncData->SwitchBsp ||
mSmmMpSyncData->CandidateBsp[CpuIndex]) {
+ //
+ // Call platform hook to do BSP election
+ //
+ Status = PlatformSmmBspElection (&IsBsp);
+ if (EFI_SUCCESS == Status) {
+ //
+ // Platform hook determines successfully
+ //
+ if (IsBsp) {
+ mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;
+ }
+ } else {
+ //
+ // Platform hook fails to determine, use default BSP election
method
+ //
+ InterlockedCompareExchange32 (
+ (UINT32*)&mSmmMpSyncData->BspIndex,
+ (UINT32)-1,
+ (UINT32)CpuIndex
+ );
+ }
+ }
+ }
+
+ //
+ // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP
+ //
+ if (mSmmMpSyncData->BspIndex == CpuIndex) {
+
+ //
+ // Clear last request for SwitchBsp.
+ //
+ if (mSmmMpSyncData->SwitchBsp) {
+ mSmmMpSyncData->SwitchBsp = FALSE;
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ mSmmMpSyncData->CandidateBsp[Index] = FALSE;
+ }
+ }
+
+ if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
+ SmmProfileRecordSmiNum ();
+ }
+
+ //
+ // BSP Handler is always called with a ValidSmi == TRUE
+ //
+ BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);
+
+ } else {
+ APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
+ }
+ }
+
+ ASSERT (mSmmMpSyncData->CpuData[CpuIndex].Run == 0);
+
+ //
+ // Wait for BSP's signal to exit SMI
+ //
+ while (mSmmMpSyncData->AllCpusInSync) {
+ CpuPause ();
+ }
+ }
+
+Exit:
+ SmmCpuFeaturesRendezvousExit (CpuIndex);
+ //
+ // Restore Cr2
+ //
+ AsmWriteCr2 (Cr2);
+}
+
+
+/**
+ Initialize un-cacheable data.
+
+**/
+VOID
+EFIAPI
+InitializeMpSyncData (
+ VOID
+ )
+{
+ if (mSmmMpSyncData != NULL) {
+ ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);
+ mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData +
sizeof (SMM_DISPATCHER_MP_SYNC_DATA));
+ mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData +
gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
+ if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
+ //
+ // Enable BSP election by setting BspIndex to -1
+ //
+ mSmmMpSyncData->BspIndex = (UINT32)-1;
+ }
+ mSmmMpSyncData->EffectiveSyncMode = (SMM_CPU_SYNC_MODE) PcdGet8
(PcdCpuSmmSyncMode);
+ }
+}
+
+/**
+ Initialize global data for MP synchronization.
+
+ @param Stacks Base address of SMI stack buffer for all processors.
+ @param StackSize Stack size for each processor in SMM.
+
+**/
+UINT32
+InitializeMpServiceData (
+ IN VOID *Stacks,
+ IN UINTN StackSize
+ )
+{
+ UINT32 Cr3;
+ UINTN Index;
+ MTRR_SETTINGS *Mtrr;
+ PROCESSOR_SMM_DESCRIPTOR *Psd;
+ UINTN GdtTssTableSize;
+ UINT8 *GdtTssTables;
+ IA32_SEGMENT_DESCRIPTOR *GdtDescriptor;
+ UINTN TssBase;
+ UINTN GdtTableStepSize;
+
+ //
+ // Initialize physical address mask
+ // NOTE: Physical memory above virtual address limit is not supported !!!
+ //
+ AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);
+ gPhyMask = LShiftU64 (1, (UINT8)Index) - 1;
+ gPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;
+
+ //
+ // Create page tables
+ //
+ Cr3 = SmmInitPageTable ();
+
+ GdtTssTables = NULL;
+ GdtTssTableSize = 0;
+ GdtTableStepSize = 0;
+ //
+ // For X64 SMM, we allocate separate GDT/TSS for each CPUs to avoid TSS load
contention
+ // on each SMI entry.
+ //
+ if (EFI_IMAGE_MACHINE_TYPE_SUPPORTED(EFI_IMAGE_MACHINE_X64)) {
+ GdtTssTableSize = (gcSmiGdtr.Limit + 1 + TSS_SIZE + 7) & ~7; // 8 bytes
aligned
+ GdtTssTables = (UINT8*)AllocatePages (EFI_SIZE_TO_PAGES (GdtTssTableSize *
gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));
+ ASSERT (GdtTssTables != NULL);
+ GdtTableStepSize = GdtTssTableSize;
+
+ for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
Index++) {
+ CopyMem (GdtTssTables + GdtTableStepSize * Index,
(VOID*)(UINTN)gcSmiGdtr.Base, gcSmiGdtr.Limit + 1 + TSS_SIZE);
+ if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ //
+ // Setup top of known good stack as IST1 for each processor.
+ //
+ *(UINTN *)(GdtTssTables + GdtTableStepSize * Index + gcSmiGdtr.Limit +
1 + TSS_X64_IST1_OFFSET) = (mSmmStackArrayBase + EFI_PAGE_SIZE + Index *
mSmmStackSize);
+ }
+ }
+ } else if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+
+ //
+ // For IA32 SMM, if SMM Stack Guard feature is enabled, we use 2 TSS.
+ // in this case, we allocate separate GDT/TSS for each CPUs to avoid TSS
load contention
+ // on each SMI entry.
+ //
+
+ //
+ // Enlarge GDT to contain 2 TSS descriptors
+ //
+ gcSmiGdtr.Limit += (UINT16)(2 * sizeof (IA32_SEGMENT_DESCRIPTOR));
+
+ GdtTssTableSize = (gcSmiGdtr.Limit + 1 + TSS_SIZE * 2 + 7) & ~7; // 8
bytes aligned
+ GdtTssTables = (UINT8*)AllocatePages (EFI_SIZE_TO_PAGES (GdtTssTableSize *
gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));
+ ASSERT (GdtTssTables != NULL);
+ GdtTableStepSize = GdtTssTableSize;
+
+ for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
Index++) {
+ CopyMem (GdtTssTables + GdtTableStepSize * Index,
(VOID*)(UINTN)gcSmiGdtr.Base, gcSmiGdtr.Limit + 1 + TSS_SIZE * 2);
+ //
+ // Fixup TSS descriptors
+ //
+ TssBase = (UINTN)(GdtTssTables + GdtTableStepSize * Index +
gcSmiGdtr.Limit + 1);
+ GdtDescriptor = (IA32_SEGMENT_DESCRIPTOR *)(TssBase) - 2;
+ GdtDescriptor->Bits.BaseLow = (UINT16)TssBase;
+ GdtDescriptor->Bits.BaseMid = (UINT8)(TssBase >> 16);
+ GdtDescriptor->Bits.BaseHigh = (UINT8)(TssBase >> 24);
+
+ TssBase += TSS_SIZE;
+ GdtDescriptor++;
+ GdtDescriptor->Bits.BaseLow = (UINT16)TssBase;
+ GdtDescriptor->Bits.BaseMid = (UINT8)(TssBase >> 16);
+ GdtDescriptor->Bits.BaseHigh = (UINT8)(TssBase >> 24);
+ //
+ // Fixup TSS segments
+ //
+ // ESP as known good stack
+ //
+ *(UINTN *)(TssBase + TSS_IA32_ESP_OFFSET) = mSmmStackArrayBase +
EFI_PAGE_SIZE + Index * mSmmStackSize;
+ *(UINT32 *)(TssBase + TSS_IA32_CR3_OFFSET) = Cr3;
+ }
+ }
+
+ //
+ // Initialize PROCESSOR_SMM_DESCRIPTOR for each CPU
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ Psd = (PROCESSOR_SMM_DESCRIPTOR *)(VOID
*)(UINTN)(mCpuHotPlugData.SmBase[Index] + SMM_PSD_OFFSET);
+ CopyMem (Psd, &gcPsd, sizeof (gcPsd));
+ if (EFI_IMAGE_MACHINE_TYPE_SUPPORTED (EFI_IMAGE_MACHINE_X64)) {
+ //
+ // For X64 SMM, set GDT to the copy allocated above.
+ //
+ Psd->SmmGdtPtr = (UINT64)(UINTN)(GdtTssTables + GdtTableStepSize *
Index);
+ } else if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ //
+ // For IA32 SMM, if SMM Stack Guard feature is enabled, set GDT to the
copy allocated above.
+ //
+ Psd->SmmGdtPtr = (UINT64)(UINTN)(GdtTssTables + GdtTableStepSize *
Index);
+ Psd->SmmGdtSize = gcSmiGdtr.Limit + 1;
+ }
+
+ //
+ // Install SMI handler
+ //
+ InstallSmiHandler (
+ Index,
+ (UINT32)mCpuHotPlugData.SmBase[Index],
+ (VOID*)((UINTN)Stacks + (StackSize * Index)),
+ StackSize,
+ (UINTN)Psd->SmmGdtPtr,
+ Psd->SmmGdtSize,
+ gcSmiIdtr.Base,
+ gcSmiIdtr.Limit + 1,
+ Cr3
+ );
+ }
+
+ //
+ // Initialize mSmmMpSyncData
+ //
+ mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +
+ (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) *
gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
+ mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA*) AllocatePages
(EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));
+ ASSERT (mSmmMpSyncData != NULL);
+ InitializeMpSyncData ();
+
+ //
+ // Record current MTRR settings
+ //
+ ZeroMem(gSmiMtrrs, sizeof (gSmiMtrrs));
+ Mtrr = (MTRR_SETTINGS*)gSmiMtrrs;
+ MtrrGetAllMtrrs (Mtrr);
+
+ return Cr3;
+}
+
+/**
+
+ Register the SMM Foundation entry point.
+
+ @param This Pointer to EFI_SMM_CONFIGURATION_PROTOCOL
instance
+ @param SmmEntryPoint SMM Foundation EntryPoint
+
+ @retval EFI_SUCCESS Successfully to register SMM foundation
entry point
+
+**/
+EFI_STATUS
+EFIAPI
+RegisterSmmEntry (
+ IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This,
+ IN EFI_SMM_ENTRY_POINT SmmEntryPoint
+ )
+{
+ //
+ // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.
+ //
+ gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;
+ return EFI_SUCCESS;
+}
Added: branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
===================================================================
--- branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
(rev 0)
+++ branches/UDK2015/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c 2015-11-17
05:04:08 UTC (rev 18840)
@@ -0,0 +1,1489 @@
+/** @file
+Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
+
+Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD
License
+which accompanies this distribution. The full text of the license may be
found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "PiSmmCpuDxeSmm.h"
+
+//
+// SMM CPU Private Data structure that contains SMM Configuration Protocol
+// along its supporting fields.
+//
+SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
+ SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
+ NULL, // SmmCpuHandle
+ NULL, // Pointer to ProcessorInfo
array
+ NULL, // Pointer to Operation array
+ NULL, // Pointer to CpuSaveStateSize
array
+ NULL, // Pointer to CpuSaveState
array
+ { {0} }, // SmmReservedSmramRegion
+ {
+ SmmStartupThisAp, //
SmmCoreEntryContext.SmmStartupThisAp
+ 0, //
SmmCoreEntryContext.CurrentlyExecutingCpu
+ 0, //
SmmCoreEntryContext.NumberOfCpus
+ NULL, //
SmmCoreEntryContext.CpuSaveStateSize
+ NULL //
SmmCoreEntryContext.CpuSaveState
+ },
+ NULL, // SmmCoreEntry
+ {
+ mSmmCpuPrivateData.SmmReservedSmramRegion, //
SmmConfiguration.SmramReservedRegions
+ RegisterSmmEntry //
SmmConfiguration.RegisterSmmEntry
+ },
+};
+
+CPU_HOT_PLUG_DATA mCpuHotPlugData = {
+ CPU_HOT_PLUG_DATA_REVISION_1, // Revision
+ 0, // Array Length of SmBase and
APIC ID
+ NULL, // Pointer to APIC ID array
+ NULL, // Pointer to SMBASE array
+ 0, // Reserved
+ 0, // SmrrBase
+ 0 // SmrrSize
+};
+
+//
+// Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
+//
+SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
+
+//
+// SMM Relocation variables
+//
+volatile BOOLEAN *mRebased;
+volatile BOOLEAN mIsBsp;
+
+///
+/// Handle for the SMM CPU Protocol
+///
+EFI_HANDLE mSmmCpuHandle = NULL;
+
+///
+/// SMM CPU Protocol instance
+///
+EFI_SMM_CPU_PROTOCOL mSmmCpu = {
+ SmmReadSaveState,
+ SmmWriteSaveState
+};
+
+EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
+
+///
+/// SMM CPU Save State Protocol instance
+///
+EFI_SMM_CPU_SAVE_STATE_PROTOCOL mSmmCpuSaveState = {
+ NULL
+};
+
+//
+// SMM stack information
+//
+UINTN mSmmStackArrayBase;
+UINTN mSmmStackArrayEnd;
+UINTN mSmmStackSize;
+
+//
+// Pointer to structure used during S3 Resume
+//
+SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
+
+UINTN mMaxNumberOfCpus = 1;
+UINTN mNumberOfCpus = 1;
+
+//
+// SMM ready to lock flag
+//
+BOOLEAN mSmmReadyToLock = FALSE;
+
+//
+// Global used to cache PCD for SMM Code Access Check enable
+//
+BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
+
+//
+// Spin lock used to serialize setting of SMM Code Access Check feature
+//
+SPIN_LOCK mConfigSmmCodeAccessCheckLock;
+
+/**
+ Initialize IDT to setup exception handlers for SMM.
+
+**/
+VOID
+InitializeSmmIdt (
+ VOID
+ )
+{
+ EFI_STATUS Status;
+ BOOLEAN InterruptState;
+ IA32_DESCRIPTOR DxeIdtr;
+ //
+ // Disable Interrupt and save DXE IDT table
+ //
+ InterruptState = SaveAndDisableInterrupts ();
+ AsmReadIdtr (&DxeIdtr);
+ //
+ // Load SMM temporary IDT table
+ //
+ AsmWriteIdtr (&gcSmiIdtr);
+ //
+ // Setup SMM default exception handlers, SMM IDT table
+ // will be updated and saved in gcSmiIdtr
+ //
+ Status = InitializeCpuExceptionHandlers (NULL);
+ ASSERT_EFI_ERROR (Status);
+ //
+ // Restore DXE IDT table and CPU interrupt
+ //
+ AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
+ SetInterruptState (InterruptState);
+}
+
+/**
+ Search module name by input IP address and output it.
+
+ @param CallerIpAddress Caller instruction pointer.
+
+**/
+VOID
+DumpModuleInfoByIp (
+ IN UINTN CallerIpAddress
+ )
+{
+ UINTN Pe32Data;
+ EFI_IMAGE_DOS_HEADER *DosHdr;
+ EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
+ VOID *PdbPointer;
+ UINT64 DumpIpAddress;
+
+ //
+ // Find Image Base
+ //
+ Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
+ while (Pe32Data != 0) {
+ DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
+ if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
+ //
+ // DOS image header is present, so read the PE header after the DOS
image header.
+ //
+ Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN)
((DosHdr->e_lfanew) & 0x0ffff));
+ //
+ // Make sure PE header address does not overflow and is less than the
initial address.
+ //
+ if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress))
{
+ if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
+ //
+ // It's PE image.
+ //
+ break;
+ }
+ }
+ }
+
+ //
+ // Not found the image base, check the previous aligned address
+ //
+ Pe32Data -= SIZE_4KB;
+ }
+
+ DumpIpAddress = CallerIpAddress;
+ DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)",
DumpIpAddress));
+
+ if (Pe32Data != 0) {
+ PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
+ if (PdbPointer != NULL) {
+ DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
+ }
+ }
+}
+
+/**
+ Read information from the CPU save state.
+
+ @param This EFI_SMM_CPU_PROTOCOL instance
+ @param Width The number of bytes to read from the CPU save state.
+ @param Register Specifies the CPU register to read form the save state.
+ @param CpuIndex Specifies the zero-based index of the CPU save state.
+ @param Buffer Upon return, this holds the CPU register value read from
the save state.
+
+ @retval EFI_SUCCESS The register was read from Save State
+ @retval EFI_NOT_FOUND The register is not defined for the Save State of
Processor
+ @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
+
+**/
+EFI_STATUS
+EFIAPI
+SmmReadSaveState (
+ IN CONST EFI_SMM_CPU_PROTOCOL *This,
+ IN UINTN Width,
+ IN EFI_SMM_SAVE_STATE_REGISTER Register,
+ IN UINTN CpuIndex,
+ OUT VOID *Buffer
+ )
+{
+ EFI_STATUS Status;
+
+ //
+ // Retrieve pointer to the specified CPU's SMM Save State buffer
+ //
+ if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
+ //
+ if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
+ //
+ // The pseudo-register only supports the 64-bit size specified by Width.
+ //
+ if (Width != sizeof (UINT64)) {
+ return EFI_INVALID_PARAMETER;
+ }
+ //
+ // If the processor is in SMM at the time the SMI occurred,
+ // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
is returned in Buffer.
+ // Otherwise, EFI_NOT_FOUND is returned.
+ //
+ if (mSmmMpSyncData->CpuData[CpuIndex].Present) {
+ *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
+ return EFI_SUCCESS;
+ } else {
+ return EFI_NOT_FOUND;
+ }
+ }
+
+ if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width,
Buffer);
+ if (Status == EFI_UNSUPPORTED) {
+ Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
+ }
+ return Status;
+}
+
+/**
+ Write data to the CPU save state.
+
+ @param This EFI_SMM_CPU_PROTOCOL instance
+ @param Width The number of bytes to read from the CPU save state.
+ @param Register Specifies the CPU register to write to the save state.
+ @param CpuIndex Specifies the zero-based index of the CPU save state
+ @param Buffer Upon entry, this holds the new CPU register value.
+
+ @retval EFI_SUCCESS The register was written from Save State
+ @retval EFI_NOT_FOUND The register is not defined for the Save State of
Processor
+ @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
+
+**/
+EFI_STATUS
+EFIAPI
+SmmWriteSaveState (
+ IN CONST EFI_SMM_CPU_PROTOCOL *This,
+ IN UINTN Width,
+ IN EFI_SMM_SAVE_STATE_REGISTER Register,
+ IN UINTN CpuIndex,
+ IN CONST VOID *Buffer
+ )
+{
+ EFI_STATUS Status;
+
+ //
+ // Retrieve pointer to the specified CPU's SMM Save State buffer
+ //
+ if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ //
+ // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
+ //
+ if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
+ return EFI_SUCCESS;
+ }
+
+ if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width,
Buffer);
+ if (Status == EFI_UNSUPPORTED) {
+ Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
+ }
+ return Status;
+}
+
+
+/**
+ C function for SMI handler. To change all processor's SMMBase Register.
+
+**/
+VOID
+EFIAPI
+SmmInitHandler (
+ VOID
+ )
+{
+ UINT32 ApicId;
+ UINTN Index;
+
+ //
+ // Update SMM IDT entries' code segment and load IDT
+ //
+ AsmWriteIdtr (&gcSmiIdtr);
+ ApicId = GetApicId ();
+
+ ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
+
+ for (Index = 0; Index < mNumberOfCpus; Index++) {
+ if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
+ //
+ // Initialize SMM specific features on the currently executing CPU
+ //
+ SmmCpuFeaturesInitializeProcessor (
+ Index,
+ mIsBsp,
+ gSmmCpuPrivate->ProcessorInfo,
+ &mCpuHotPlugData
+ );
+
+ if (mIsBsp) {
+ //
+ // BSP rebase is already done above.
+ // Initialize private data during S3 resume
+ //
+ InitializeMpSyncData ();
+ }
+
+ //
+ // Hook return after RSM to set SMM re-based flag
+ //
+ SemaphoreHook (Index, &mRebased[Index]);
+
+ return;
+ }
+ }
+ ASSERT (FALSE);
+}
+
+/**
+ Relocate SmmBases for each processor.
+
+ Execute on first boot and all S3 resumes
+
+**/
+VOID
+EFIAPI
+SmmRelocateBases (
+ VOID
+ )
+{
+ UINT8 BakBuf[BACK_BUF_SIZE];
+ SMRAM_SAVE_STATE_MAP BakBuf2;
+ SMRAM_SAVE_STATE_MAP *CpuStatePtr;
+ UINT8 *U8Ptr;
+ UINT32 ApicId;
+ UINTN Index;
+ UINTN BspIndex;
+
+ //
+ // Make sure the reserved size is large enough for procedure SmmInitTemplate.
+ //
+ ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
+
+ //
+ // Patch ASM code template with current CR0, CR3, and CR4 values
+ //
+ gSmmCr0 = (UINT32)AsmReadCr0 ();
+ gSmmCr3 = (UINT32)AsmReadCr3 ();
+ gSmmCr4 = (UINT32)AsmReadCr4 ();
+
+ //
+ // Patch GDTR for SMM base relocation
+ //
+ gcSmiInitGdtr.Base = gcSmiGdtr.Base;
+ gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
+
+ U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
+ CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE +
SMRAM_SAVE_STATE_MAP_OFFSET);
+
+ //
+ // Backup original contents at address 0x38000
+ //
+ CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
+ CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
+
+ //
+ // Load image for relocation
+ //
+ CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
+
+ //
+ // Retrieve the local APIC ID of current processor
+ //
+ ApicId = GetApicId ();
+
+ //
+ // Relocate SM bases for all APs
+ // This is APs' 1st SMI - rebase will be done here, and APs' default SMI
handler will be overridden by gcSmmInitTemplate
+ //
+ mIsBsp = FALSE;
+ BspIndex = (UINTN)-1;
+ for (Index = 0; Index < mNumberOfCpus; Index++) {
+ mRebased[Index] = FALSE;
+ if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
+ SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
+ //
+ // Wait for this AP to finish its 1st SMI
+ //
+ while (!mRebased[Index]);
+ } else {
+ //
+ // BSP will be Relocated later
+ //
+ BspIndex = Index;
+ }
+ }
+
+ //
+ // Relocate BSP's SMM base
+ //
+ ASSERT (BspIndex != (UINTN)-1);
+ mIsBsp = TRUE;
+ SendSmiIpi (ApicId);
+ //
+ // Wait for the BSP to finish its 1st SMI
+ //
+ while (!mRebased[BspIndex]);
+
+ //
+ // Restore contents at address 0x38000
+ //
+ CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
+ CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
+}
+
+/**
+ Perform SMM initialization for all processors in the S3 boot path.
+
+ For a native platform, MP initialization in the S3 boot path is also
performed in this function.
+**/
+VOID
+EFIAPI
+SmmRestoreCpu (
+ VOID
+ )
+{
+ SMM_S3_RESUME_STATE *SmmS3ResumeState;
+ IA32_DESCRIPTOR Ia32Idtr;
+ IA32_DESCRIPTOR X64Idtr;
+ IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
+ EFI_STATUS Status;
+
+ DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
+
+ //
+ // See if there is enough context to resume PEI Phase
+ //
+ if (mSmmS3ResumeState == NULL) {
+ DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
+ CpuDeadLoop ();
+ }
+
+ SmmS3ResumeState = mSmmS3ResumeState;
+ ASSERT (SmmS3ResumeState != NULL);
+
+ if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
+ //
+ // Save the IA32 IDT Descriptor
+ //
+ AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
+
+ //
+ // Setup X64 IDT table
+ //
+ ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
+ X64Idtr.Base = (UINTN) IdtEntryTable;
+ X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
+ AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
+
+ //
+ // Setup the default exception handler
+ //
+ Status = InitializeCpuExceptionHandlers (NULL);
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Initialize Debug Agent to support source level debug
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID
*)&Ia32Idtr, NULL);
+ }
+
+ //
+ // Do below CPU things for native platform only
+ //
+ if (!FeaturePcdGet(PcdFrameworkCompatibilitySupport)) {
+ //
+ // Skip initialization if mAcpiCpuData is not valid
+ //
+ if (mAcpiCpuData.NumberOfCpus > 0) {
+ //
+ // First time microcode load and restore MTRRs
+ //
+ EarlyInitializeCpu ();
+ }
+ }
+
+ //
+ // Restore SMBASE for BSP and all APs
+ //
+ SmmRelocateBases ();
+
+ //
+ // Do below CPU things for native platform only
+ //
+ if (!FeaturePcdGet(PcdFrameworkCompatibilitySupport)) {
+ //
+ // Skip initialization if mAcpiCpuData is not valid
+ //
+ if (mAcpiCpuData.NumberOfCpus > 0) {
+ //
+ // Restore MSRs for BSP and all APs
+ //
+ InitializeCpu ();
+ }
+ }
+
+ //
+ // Set a flag to restore SMM configuration in S3 path.
+ //
+ mRestoreSmmConfigurationInS3 = TRUE;
+
+ DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n",
SmmS3ResumeState->ReturnCs));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n",
SmmS3ResumeState->ReturnEntryPoint));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n",
SmmS3ResumeState->ReturnContext1));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n",
SmmS3ResumeState->ReturnContext2));
+ DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n",
SmmS3ResumeState->ReturnStackPointer));
+
+ //
+ // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
+ //
+ if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
+ DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI
Phase\n"));
+
+ SwitchStack (
+ (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
+ (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
+ (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
+ (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
+ );
+ }
+
+ //
+ // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI
Phase
+ //
+ if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
+ DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in
PEI Phase\n"));
+ //
+ // Disable interrupt of Debug timer, since new IDT table is for IA32 and
will not work in long mode.
+ //
+ SaveAndSetDebugTimerInterrupt (FALSE);
+ //
+ // Restore IA32 IDT table
+ //
+ AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
+ AsmDisablePaging64 (
+ SmmS3ResumeState->ReturnCs,
+ (UINT32)SmmS3ResumeState->ReturnEntryPoint,
+ (UINT32)SmmS3ResumeState->ReturnContext1,
+ (UINT32)SmmS3ResumeState->ReturnContext2,
+ (UINT32)SmmS3ResumeState->ReturnStackPointer
+ );
+ }
+
+ //
+ // Can not resume PEI Phase
+ //
+ DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
+ CpuDeadLoop ();
+}
+
+/**
+ Copy register table from ACPI NVS memory into SMRAM.
+
+ @param[in] DestinationRegisterTableList Points to destination register
table.
+ @param[in] SourceRegisterTableList Points to source register table.
+ @param[in] NumberOfCpus Number of CPUs.
+
+**/
+VOID
+CopyRegisterTable (
+ IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
+ IN CPU_REGISTER_TABLE *SourceRegisterTableList,
+ IN UINT32 NumberOfCpus
+ )
+{
+ UINTN Index;
+ UINTN Index1;
+ CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
+
+ CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus
* sizeof (CPU_REGISTER_TABLE));
+ for (Index = 0; Index < NumberOfCpus; Index++) {
+ DestinationRegisterTableList[Index].RegisterTableEntry = AllocatePool
(DestinationRegisterTableList[Index].AllocatedSize);
+ ASSERT (DestinationRegisterTableList[Index].RegisterTableEntry != NULL);
+ CopyMem (DestinationRegisterTableList[Index].RegisterTableEntry,
SourceRegisterTableList[Index].RegisterTableEntry,
DestinationRegisterTableList[Index].AllocatedSize);
+ //
+ // Go though all MSRs in register table to initialize MSR spin lock
+ //
+ RegisterTableEntry =
DestinationRegisterTableList[Index].RegisterTableEntry;
+ for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength;
Index1++, RegisterTableEntry++) {
+ if ((RegisterTableEntry->RegisterType == Msr) &&
(RegisterTableEntry->ValidBitLength < 64)) {
+ //
+ // Initialize MSR spin lock only for those MSRs need bit field writing
+ //
+ InitMsrSpinLockByIndex (RegisterTableEntry->Index);
+ }
+ }
+ }
+}
+
+/**
+ SMM Ready To Lock event notification handler.
+
+ The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
+ perform additional lock actions that must be performed from SMM on the next
SMI.
+
+ @param[in] Protocol Points to the protocol's unique identifier.
+ @param[in] Interface Points to the interface instance.
+ @param[in] Handle The handle on which the interface was installed.
+
+ @retval EFI_SUCCESS Notification handler runs successfully.
+ **/
+EFI_STATUS
+EFIAPI
+SmmReadyToLockEventNotify (
+ IN CONST EFI_GUID *Protocol,
+ IN VOID *Interface,
+ IN EFI_HANDLE Handle
+ )
+{
+ ACPI_CPU_DATA *AcpiCpuData;
+ IA32_DESCRIPTOR *Gdtr;
+ IA32_DESCRIPTOR *Idtr;
+
+ //
+ // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
+ //
+ mAcpiCpuData.NumberOfCpus = 0;
+
+ //
+ // If FrameworkCompatibilitySspport is enabled, then do not copy CPU S3 Data
into SMRAM
+ //
+ if (FeaturePcdGet (PcdFrameworkCompatibilitySupport)) {
+ goto Done;
+ }
+
+ //
+ // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into
SMRAM
+ //
+ AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
+ if (AcpiCpuData == 0) {
+ goto Done;
+ }
+
+ //
+ // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3
Resume.
+ //
+ CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
+
+ mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof
(MTRR_SETTINGS));
+ ASSERT (mAcpiCpuData.MtrrTable != 0);
+
+ CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID
*)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
+
+ mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof
(IA32_DESCRIPTOR));
+ ASSERT (mAcpiCpuData.GdtrProfile != 0);
+
+ CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID
*)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
+
+ mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof
(IA32_DESCRIPTOR));
+ ASSERT (mAcpiCpuData.IdtrProfile != 0);
+
+ CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID
*)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
+
+ mAcpiCpuData.PreSmmInitRegisterTable =
(EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof
(CPU_REGISTER_TABLE));
+ ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
+
+ CopyRegisterTable (
+ (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
+ (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
+ mAcpiCpuData.NumberOfCpus
+ );
+
+ mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool
(mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
+ ASSERT (mAcpiCpuData.RegisterTable != 0);
+
+ CopyRegisterTable (
+ (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
+ (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
+ mAcpiCpuData.NumberOfCpus
+ );
+
+ //
+ // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
+ //
+ Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
+ Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
+
+ mGdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) +
mAcpiCpuData.ApMachineCheckHandlerSize);
+ ASSERT (mGdtForAp != NULL);
+ mIdtForAp = (VOID *) ((UINTN)mGdtForAp + (Gdtr->Limit + 1));
+ mMachineCheckHandlerForAp = (VOID *) ((UINTN)mIdtForAp + (Idtr->Limit + 1));
+
+ CopyMem (mGdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
+ CopyMem (mIdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
+ CopyMem (mMachineCheckHandlerForAp, (VOID
*)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase,
mAcpiCpuData.ApMachineCheckHandlerSize);
+
+Done:
+ //
+ // Set SMM ready to lock flag and return
+ //
+ mSmmReadyToLock = TRUE;
+ return EFI_SUCCESS;
+}
+
+/**
+ The module Entry Point of the CPU SMM driver.
+
+ @param ImageHandle The firmware allocated handle for the EFI image.
+ @param SystemTable A pointer to the EFI System Table.
+
+ @retval EFI_SUCCESS The entry point is executed successfully.
+ @retval Other Some error occurs when executing this entry point.
+
+**/
+EFI_STATUS
+EFIAPI
+PiCpuSmmEntry (
+ IN EFI_HANDLE ImageHandle,
+ IN EFI_SYSTEM_TABLE *SystemTable
+ )
+{
+ EFI_STATUS Status;
+ EFI_MP_SERVICES_PROTOCOL *MpServices;
+ UINTN NumberOfEnabledProcessors;
+ UINTN Index;
+ VOID *Buffer;
+ UINTN TileSize;
+ VOID *GuidHob;
+ EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
+ SMM_S3_RESUME_STATE *SmmS3ResumeState;
+ UINT8 *Stacks;
+ VOID *Registration;
+ UINT32 RegEax;
+ UINT32 RegEdx;
+ UINTN FamilyId;
+ UINTN ModelId;
+ UINT32 Cr3;
+
+ //
+ // Initialize Debug Agent to support source level debug in SMM code
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
+
+ //
+ // Report the start of CPU SMM initialization.
+ //
+ REPORT_STATUS_CODE (
+ EFI_PROGRESS_CODE,
+ EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
+ );
+
+ //
+ // Fix segment address of the long-mode-switch jump
+ //
+ if (sizeof (UINTN) == sizeof (UINT64)) {
+ gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
+ }
+
+ //
+ // Find out SMRR Base and SMRR Size
+ //
@@ Diff output truncated at 100000 characters. @@
------------------------------------------------------------------------------
_______________________________________________
edk2-commits mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/edk2-commits