Hi Statisticians/simulation experts,

I am doing the following simulations in a fishery problem:

1. Generate a population using a stock-recruitment (S-R) model with a
normally distributed random error.

2. Estimate harvest using a catch equation with two input parameters
that are varied Uniformly and Normally, respectively, from known values.

3. Estimate 1000 optimum harvest rates for a set of 1000 random errors
added to the S-R model (normal variable), parameter 1 in the catch
equation (uniform variable), and parameter 2 in the catch equation
(normal variable).

For example,

S-R model+ e1, parameter 1+u1, and parameter 2+e1   produces Optimum
harvest rate 1
S-R model+ e2, parameter 1+u2, and parameter 2+e2   produces Optimum
harvest rate 2
S-R model+ e3, parameter 1+u3, and parameter 2+e3   produces Optimum
harvest rate 3.
..................................................................................................................................,
etc.

Please note that only one set of 1000 normal random errors (e) and one
set of 1000 uniform random errors (u) are used  to produce 1000 optimum
harvest rates.

4. Then, I plot the frequency distribution of optimum harvest rate to
get a 95% confidence interval.

Is this approach correct?

Thanks for any comments or suggestions.
Siddeek





.
.
=================================================================
Instructions for joining and leaving this list, remarks about the
problem of INAPPROPRIATE MESSAGES, and archives are available at:
.                  http://jse.stat.ncsu.edu/                    .
=================================================================

Reply via email to