Thanks for the explanation. My appreciation to Gottgried Helms and
Donald Burrill.

Just for a record, I found a detail example from the Edward Jackson's
book "A user's guide to principal components", pp271.

In summary, once I regressed the "Ys" on the four factor scores
("fs1", "fs2", "fs3",  "fs4"), replace the four factor scores with
Factor Score Coefficients (FSC). See the Minitab output below.

Therfore, the regression equation is
Ys = 0.000 + 0.472*fs1 + 0.352*fs2 + 0.343*fs3 - 0.419*fs4
Ys = 0.000 + 0.472*(-0.105*X1s+1.146*X2s+0.089*X3s-0.303*X4s)
           + 0.352*(-0.195*X1s+0.097*X2s-0.081*X3s-0.278*X4s)
           + 0.343*(-0.084*X1s-0.087*X2s-1.104*X3s-0.237*X4s)
           - 0.419*(-0.365*X1s+0.371*X2s-0.294*X3s-1.367*X4s)
   = -0.311*X1s+0.389*X2s-0.242*X3s+0.248*X4s



Minitab output:

## Factor Analysis: X1s, X2s, X3s, X4s
>> ........
Principal Component Factor Analysis of the Correlation Matrix
>>......
Rotated Factor Loadings and Communalities
Varimax Rotation
Variable     Factor1     Factor2     Factor3     Factor4 Communality
X1s            0.023      -0.981       0.023       0.191       1.000
X2s            0.962      -0.025       0.142      -0.234       1.000
X3s           -0.139       0.023      -0.971       0.195       1.000
X4s            0.286       0.251       0.243      -0.892       1.000

Variance      1.0265      1.0265      1.0216      0.9255      4.0000
% Var          0.257       0.257       0.255       0.231       1.000

Factor Score Coefficients (FSC)
Variable    Factor1    Factor2    Factor3    Factor4
X1s          -0.105     -1.095     -0.084     -0.365
X2s           1.146      0.097     -0.087      0.371
X3s           0.089     -0.081     -1.104     -0.294
X4s          -0.303     -0.278     -0.237     -1.361


## Regression Analysis: Ys versus fs1, fs2, fs3, fs4
The regression equation is
Ys = 0.000 + 0.472 fs1 + 0.352 fs2 + 0.343 fs3 - 0.419 fs4

Predictor        Coef     SE Coef          T        P       VIF
Constant       0.0000      0.1097       0.00    1.000
fs1            0.4724      0.1114       4.24    0.000       1.0
fs2            0.3523      0.1114       3.16    0.004       1.0
fs3            0.3426      0.1114       3.08    0.005       1.0
fs4           -0.4190      0.1114      -3.76    0.001       1.0

S = 0.6398             R-Sq = 64.0%         R-Sq(adj) = 59.1%
PRESS = 15.7834        R-Sq(pred) = 52.17%
.
.
=================================================================
Instructions for joining and leaving this list, remarks about the
problem of INAPPROPRIATE MESSAGES, and archives are available at:
.                  http://jse.stat.ncsu.edu/                    .
=================================================================

Reply via email to