PR is here:
https://bitbucket.org/eigen/eigen/pull-requests/659/fix-cuda-build-on-mac/diff


On Thu, Jun 20, 2019 at 3:12 PM Eric Klein <[email protected]> wrote:

> Thank you both. I appreciate the help with this.
> ---
> Eric Klein
> [email protected]
>
>
> On Thu, Jun 20, 2019 at 3:11 PM Artem Belevich <[email protected]> wrote:
>
>> The changes look reasonable to me. Thank you for helping to sort this out.
>>
>>
>> On Thu, Jun 20, 2019 at 3:05 PM Eric Klein <[email protected]> wrote:
>>
>>> Ok. Looks like the warnings are there with and without my hack(s), and
>>> the minimal set of edits needed to get Eigen to build on Mac with nvcc
>>> consists of:
>>>
>>> Half.h. Change this:
>>> #if !defined(EIGEN_HAS_NATIVE_FP16) || EIGEN_COMP_CLANG // Emulate
>>> support for half floats
>>> to this:
>>> #if !defined(EIGEN_HAS_NATIVE_FP16) || (EIGEN_COMP_CLANG &&
>>> !EIGEN_COMP_NVCC) // Emulate support for half floats
>>>
>>> And in PacketMath.h, change this:
>>> #if defined(EIGEN_CUDA_ARCH) || defined(EIGEN_HIP_DEVICE_COMPILE) ||
>>> (defined(EIGEN_CUDACC) && EIGEN_COMP_CLANG)
>>> to this:
>>> #if defined(EIGEN_CUDA_ARCH) || defined(EIGEN_HIP_DEVICE_COMPILE) ||
>>> (defined(EIGEN_CUDACC) && EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC)
>>>
>>> Obviously that's excluding any enlightening comments about why that's
>>> being done.
>>>
>>> Would you like me to prepare a patch file, or is this something that
>>> would be better handled by one of the regular contributors?
>>>
>>> Thank you!
>>> ---
>>> Eric Klein
>>> [email protected]
>>>
>>>
>>> On Thu, Jun 20, 2019 at 12:01 AM Eric Klein <[email protected]> wrote:
>>>
>>>> That appears to work, although there are 2-3 other places that need
>>>> similar modifications in order to work. I'll try to get you a more complete
>>>> list tomorrow.
>>>>
>>>> I'm paying more attention tonight to warnings coming from Eigen than I
>>>> had been previously ignoring, and both with my old Macros.h based hack and
>>>> the newer modifications, I'm seeing some of these: "warning: calling a
>>>> __host__ function from a __host__ __device__ function is not allowed". A
>>>> representative one is:
>>>>
>>>> external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h(735):
>>>> warning: calling a __host__ function from a __host__ __device__ function is
>>>> not allowed
>>>>           detected during:
>>>>             instantiation of "__nv_bool Eigen::TensorEvaluator<const
>>>> Eigen::TensorReductionOp<Op, Dims, ArgType, MakePointer_>,
>>>> Device>::evalSubExprsIfNeeded(MakePointer_<Eigen::TensorEvaluator<const
>>>> Eigen::TensorReductionOp<Op, Dims, ArgType, MakePointer_>,
>>>> Device>::CoeffReturnType>::Type) [with
>>>> Op=Eigen::internal::AvgPoolMeanReducer<double>, Dims=const
>>>> Eigen::IndexList<Eigen::type2index<1L>, Eigen::type2index<2L>>,
>>>> ArgType=const Eigen::TensorImagePatchOp<-1L, -1L, const
>>>> Eigen::TensorLayoutSwapOp<const Eigen::TensorMap<Eigen::Tensor<const
>>>> double, 4, 1, Eigen::DenseIndex>, 16, Eigen::MakePointer>>>,
>>>> MakePointer_=Eigen::MakePointer, Device=Eigen::GpuDevice]"
>>>> external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h(172):
>>>> here
>>>>             instantiation of "__nv_bool Eigen::TensorEvaluator<const
>>>> Eigen::TensorReshapingOp<NewDimensions, ArgType>,
>>>> Device>::evalSubExprsIfNeeded(Eigen::TensorEvaluator<const
>>>> Eigen::TensorReshapingOp<NewDimensions, ArgType>, Device>::CoeffReturnType
>>>> *) [with NewDimensions=const Eigen::DSizes<Eigen::DenseIndex, 4>,
>>>> ArgType=const
>>>> Eigen::TensorReductionOp<Eigen::internal::AvgPoolMeanReducer<double>, const
>>>> Eigen::IndexList<Eigen::type2index<1L>, Eigen::type2index<2L>>, const
>>>> Eigen::TensorImagePatchOp<-1L, -1L, const Eigen::TensorLayoutSwapOp<const
>>>> Eigen::TensorMap<Eigen::Tensor<const double, 4, 1, Eigen::DenseIndex>, 16,
>>>> Eigen::MakePointer>>>, Eigen::MakePointer>, Device=Eigen::GpuDevice]"
>>>> external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h(146):
>>>> here
>>>>             instantiation of "__nv_bool Eigen::TensorEvaluator<const
>>>> Eigen::TensorAssignOp<LeftArgType, RightArgType>,
>>>> Device>::evalSubExprsIfNeeded(Eigen::TensorEvaluator<const
>>>> Eigen::TensorAssignOp<LeftArgType, RightArgType>, Device>::Scalar *) [with
>>>> LeftArgType=Eigen::TensorLayoutSwapOp<Eigen::TensorMap<Eigen::Tensor<double,
>>>> 4, 1, Eigen::DenseIndex>, 16, Eigen::MakePointer>>, RightArgType=const
>>>> Eigen::TensorReshapingOp<const Eigen::DSizes<Eigen::DenseIndex, 4>, const
>>>> Eigen::TensorReductionOp<Eigen::internal::AvgPoolMeanReducer<double>, const
>>>> Eigen::IndexList<Eigen::type2index<1L>, Eigen::type2index<2L>>, const
>>>> Eigen::TensorImagePatchOp<-1L, -1L, const Eigen::TensorLayoutSwapOp<const
>>>> Eigen::TensorMap<Eigen::Tensor<const double, 4, 1, Eigen::DenseIndex>, 16,
>>>> Eigen::MakePointer>>>, Eigen::MakePointer>>, Device=Eigen::GpuDevice]"
>>>> external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h(422):
>>>> here
>>>>             instantiation of "void
>>>> Eigen::internal::TensorExecutor<Expression, Eigen::GpuDevice, Vectorizable,
>>>> Tileable>::run(const Expression &, const Eigen::GpuDevice &) [with
>>>> Expression=const
>>>> Eigen::TensorAssignOp<Eigen::TensorLayoutSwapOp<Eigen::TensorMap<Eigen::Tensor<double,
>>>> 4, 1, Eigen::DenseIndex>, 16, Eigen::MakePointer>>, const
>>>> Eigen::TensorReshapingOp<const Eigen::DSizes<Eigen::DenseIndex, 4>, const
>>>> Eigen::TensorReductionOp<Eigen::internal::AvgPoolMeanReducer<double>, const
>>>> Eigen::IndexList<Eigen::type2index<1L>, Eigen::type2index<2L>>, const
>>>> Eigen::TensorImagePatchOp<-1L, -1L, const Eigen::TensorLayoutSwapOp<const
>>>> Eigen::TensorMap<Eigen::Tensor<const double, 4, 1, Eigen::DenseIndex>, 16,
>>>> Eigen::MakePointer>>>, Eigen::MakePointer>>>, Vectorizable=false,
>>>> Tileable=false]"
>>>> external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h(35):
>>>> here
>>>>             instantiation of "Eigen::TensorDevice<ExpressionType,
>>>> DeviceType> &Eigen::TensorDevice<ExpressionType,
>>>> DeviceType>::operator=(const OtherDerived &) [with
>>>> ExpressionType=Eigen::TensorLayoutSwapOp<Eigen::TensorMap<Eigen::Tensor<double,
>>>> 4, 1, Eigen::DenseIndex>, 16, Eigen::MakePointer>>,
>>>> DeviceType=tensorflow::GPUDevice,
>>>> OtherDerived=Eigen::TensorReshapingOp<const
>>>> Eigen::DSizes<Eigen::DenseIndex, 4>, const
>>>> Eigen::TensorReductionOp<Eigen::internal::AvgPoolMeanReducer<double>, const
>>>> Eigen::IndexList<Eigen::type2index<1L>, Eigen::type2index<2L>>, const
>>>> Eigen::TensorImagePatchOp<-1L, -1L, const Eigen::TensorLayoutSwapOp<const
>>>> Eigen::TensorMap<Eigen::Tensor<const double, 4, 1, Eigen::DenseIndex>, 16,
>>>> Eigen::MakePointer>>>, Eigen::MakePointer>>]"
>>>> ./tensorflow/core/kernels/avgpooling_op.h(42): here
>>>>             instantiation of "void
>>>> tensorflow::functor::SpatialAvgPooling<Device, T>::operator()(const Device
>>>> &, tensorflow::TTypes<T, 4, Eigen::DenseIndex>::Tensor,
>>>> tensorflow::TTypes<T, 4, Eigen::DenseIndex>::ConstTensor, int, int, int,
>>>> int, const Eigen::PaddingType &) [with Device=tensorflow::GPUDevice,
>>>> T=double]"
>>>> tensorflow/core/kernels/avgpooling_op_gpu.cu.cc(38): here
>>>>
>>>>
>>>> I'm not sure how concerned I should be about these. The build will
>>>> succeed, but... I wouldn't be at all surprised to get weird results
>>>> eventually.
>>>>
>>>> In this particular case, it looks like it's complaining because
>>>> Eigen::GpuDevice::allocate_temp appears to be __host__ rather than __host__
>>>> __device__ (i.e. missing EIGEN_DEVICE_FUNC). I fully admit that I could be
>>>> misinterpreting that or otherwise misunderstanding something basic.
>>>>
>>>> Should I be concerned about these?
>>>>
>>>> Thanks!
>>>> ---
>>>> Eric Klein
>>>> [email protected]
>>>>
>>>>
>>>> On Wed, Jun 19, 2019 at 5:21 PM Rasmus Munk Larsen <[email protected]>
>>>> wrote:
>>>>
>>>>> Erik, does Artem's suggestion work for you?
>>>>>
>>>>> On Wed, Jun 19, 2019 at 2:52 PM Artem Belevich <[email protected]> wrote:
>>>>>
>>>>>>
>>>>>>
>>>>>> On Wed, Jun 19, 2019 at 1:47 PM Rasmus Munk Larsen <
>>>>>> [email protected]> wrote:
>>>>>>
>>>>>>> It looks like we broke the Eigen Cuda build on Mac. What do you
>>>>>>> think about his workaround?
>>>>>>>
>>>>>>> ---------- Forwarded message ---------
>>>>>>> From: Eric Klein <[email protected]>
>>>>>>> Date: Wed, Jun 19, 2019 at 1:39 PM
>>>>>>> Subject: [eigen] Mac CUDA build failure question
>>>>>>> To: <[email protected]>
>>>>>>>
>>>>>>>
>>>>>>> Hello all,
>>>>>>>
>>>>>>> I posted a question on the forums several days back, but suspect
>>>>>>> that might not be the right place to be asking what I'm asking, so I'm
>>>>>>> trying the mailing list as well.
>>>>>>>
>>>>>>> I'll just repost here what I put in the forums, but the link to that
>>>>>>> is here: https://forum.kde.org/viewtopic.php?f=74&t=161199
>>>>>>>
>>>>>>> I'm trying to build Eigen on Mac for CUDA (using the nvcc compiler),
>>>>>>> and getting build errors. I understand the errors, and I have a change 
>>>>>>> that
>>>>>>> lets me dodge the build failures, but I suspect it's not the right 
>>>>>>> change
>>>>>>> for checkin, and so I'm looking for feedback.
>>>>>>>
>>>>>>> So the issue I have is in Half.h. I wind up getting errors about a
>>>>>>> bunch of operators being already defined. The core issue is that on Mac,
>>>>>>> nvcc (the CUDA compliler) is using gcc as the host compiler, but gcc on 
>>>>>>> Mac
>>>>>>> is built on top of clang. Eigen seems to be implicitly assuming that the
>>>>>>> presence of clang implies that absence of CUDA (or at least the absence 
>>>>>>> of
>>>>>>> nvcc CUDA support).
>>>>>>>
>>>>>>> In my build I'm hitting this block:
>>>>>>>
>>>>>>> #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
>>>>>>>      EIGEN_CUDA_ARCH >= 530) ||                                  \
>>>>>>>     (defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE))
>>>>>>> #define EIGEN_HAS_NATIVE_FP16
>>>>>>> #endif
>>>>>>>
>>>>>>> which results in EIGEN_HAS_NATIVE_FP16 being set, and so we wind up
>>>>>>> compiling in all the operators from Half.h:253-313. That's fine so far.
>>>>>>>
>>>>>>
>>>>>> This assumes device-side compilation.
>>>>>>
>>>>>>
>>>>>>>
>>>>>>> What happens next is we hit this line:
>>>>>>>
>>>>>>> #if !defined(EIGEN_HAS_NATIVE_FP16) || EIGEN_COMP_CLANG // Emulate
>>>>>>> support for half floats
>>>>>>>
>>>>>>> which is followed shortly after by (roughly) the same operator
>>>>>>> functions (but... emulated), and I get errors because those operator
>>>>>>> functions were defined above.
>>>>>>>
>>>>>>
>>>>>> If Clang were CUDA compiler, that would not be a problem. This
>>>>>> implies that it's a CUDA compilation with NVCC. What puzzles me is how 
>>>>>> did
>>>>>> we end up with EIGEN_COMP_CLANG defined for the *device* side of the
>>>>>> compilation. I suspect it's the side effect of NVCC doing device-side
>>>>>> preprocessing with clang, but actually compiling with cicc, which is
>>>>>> obviously not clang.
>>>>>>
>>>>>> I guess what we need to do here is something like this:
>>>>>> #if !defined(EIGEN_HAS_NATIVE_FP16) || (EIGEN_COMP_CLANG && !
>>>>>> EIGEN_COMP_NVCC)
>>>>>>
>>>>>> That, and a comment explaining what's going on.
>>>>>>
>>>>>> If that does not help, it would be great to compile with '-keep
>>>>>> -verbose' and check which compilation phase is failing and what exactly 
>>>>>> is
>>>>>> it trying to compile.
>>>>>>
>>>>>> --Artem
>>>>>>
>>>>>>
>>>>>>> So. My hack to work around this is to ensure that EIGEN_COMP_CLANG
>>>>>>> gets set to 0 in Macros.h if __NVCC__ is defined. That works fine for me
>>>>>>> locally, and gets Eigen building fine (and thus unblocks me on getting
>>>>>>> TensorFlow building for Mac, or at least unblocks this issue).
>>>>>>>
>>>>>>> I'm willing to bet however that this is the wrong thing to do in
>>>>>>> general. I don't understand enough of what this second code block is 
>>>>>>> doing
>>>>>>> to really understand why clang is being treated differently than nvcc 
>>>>>>> here
>>>>>>> (and specifically why half support needs to be emulated in the presence 
>>>>>>> of
>>>>>>> clang). I believe there is a version of clang that supports CUDA (at 
>>>>>>> least
>>>>>>> on some platforms?). Presumably this is for that, but I don't know 
>>>>>>> enough
>>>>>>> about how that differs from nvcc to fully grok this.
>>>>>>>
>>>>>>> Can anyone help enlighten me about the best way to fix this?
>>>>>>>
>>>>>>> Thanks!
>>>>>>> ---
>>>>>>> Eric Klein
>>>>>>> [email protected]
>>>>>>>
>>>>>>
>>>>>>
>>>>>> --
>>>>>> --Artem Belevich
>>>>>>
>>>>>
>>
>> --
>> --Artem Belevich
>>
>

Reply via email to