Hello,

I am trying to write a finite difference function for Eigen::Tensors. Currently 
I am using a lambda:

auto diff = [](Eigen::Tensor<std::complex<float>, 3> const &a, Eigen::Index 
const d) {
  Dims3 const sz{a.dimension(0) - 2, a.dimension(1) - 2, a.dimension(2) - 2};
  Dims3 const st1{1, 1, 1};
  Dims3 fwd{1, 1, 1};
  Dims3 bck{1, 1, 1};
  fwd[d] = 2;
  bck[d] = 0;

  return (a.slice(fwd, sz) - a.slice(bck, sz)) / a.slice(st1, sz).constant(2.f);
};

This works okay. However, I would like to do two things:

1 – Change this from a lambda into a free function. What should the return type 
of the function be, so that it returns the expression/operation and does not 
evaluate the tensor into a temporary?
2 – I would prefer to pass in a TensorRef, so I can pass in a .chip() from a 4D 
tensor without a temporary. When I try to do this with the current lambda, and 
I am assigning to a slice, e.g.

b.chip<3>(0).slice(st1, sz) = diff(a, 0);

I get the following error:

TensorRef.h:413:51: error: cannot initialize return object of type 
'Eigen::TensorEvaluator<const 
Eigen::TensorRef<Eigen::Tensor<std::__1::complex<float>, 3, 0, long> >, 
Eigen::ThreadPoolDevice>::Scalar *' (aka 'std::__1::complex<float> *') with an 
rvalue of type 'const Eigen::TensorRef<Eigen::Tensor<std::__1::complex<float>, 
3, 0, long> >::Scalar *' (aka 'const std::__1::complex<float> *')

This appears to be complaining that I can’t assign a `const std::complex<float> 
*` to a `std::complex<float> *`?

Thanks in advance,
Toby

Reply via email to