That is remarkably slim code to get those results! Cook, Malcolm <m...@stowers.org> writes:
> John, > > Checkout what R sqldf package makes easy: > > ** aggregation example > > Examples from https://github.com/tbanel/orgaggregate > > > #+NAME: original > | Day | Color | Level | Quantity | > |-----------+-------+-------+----------| > | Monday | Red | 30 | 11 | > | Monday | Blue | 25 | 3 | > | Tuesday | Red | 51 | 12 | > | Tuesday | Red | 45 | 15 | > | Tuesday | Blue | 33 | 18 | > | Wednesday | Red | 27 | 23 | > | Wednesday | Blue | 12 | 16 | > | Wednesday | Blue | 15 | 15 | > | Thursday | Red | 39 | 24 | > | Thursday | Red | 41 | 29 | > | Thursday | Red | 49 | 30 | > | Friday | Blue | 7 | 5 | > | Friday | Blue | 6 | 8 | > | Friday | Blue | 11 | 9 | > > #+PROPERTY: header-args:R :session *R* > > #+begin_src R :results none > library(sqldf) > #+end_src > > > #+begin_src R :var original=original :colnames yes > sqldf('select Color, count(*) from original group by Color;') > #+end_src > > #+RESULTS: > | Color | count(*) | > |-------+----------| > | Blue | 7 | > | Red | 7 | > > > > ** join example > > Example from https://github.com/tbanel/orgtbljoin > > #+name: nutrition > | type | Fiber | Sugar | Protein | Carb | > |----------+-------+-------+---------+------| > | eggplant | 2.5 | 3.2 | 0.8 | 8.6 | > | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 | > | onion | 1.3 | 4.4 | 1.3 | 9.0 | > | egg | 0 | 18.3 | 31.9 | 18.3 | > | rice | 0.2 | 0 | 1.5 | 16.0 | > | bread | 0.7 | 0.7 | 3.3 | 16.0 | > | orange | 3.1 | 11.9 | 1.3 | 17.6 | > | banana | 2.1 | 9.9 | 0.9 | 18.5 | > | tofu | 0.7 | 0.5 | 6.6 | 1.4 | > | nut | 2.6 | 1.3 | 4.9 | 7.2 | > | corn | 4.7 | 1.8 | 2.8 | 21.3 | > > > #+name: recipe > | type | quty | > |----------+------| > | onion | 70 | > | tomatoe | 120 | > | eggplant | 300 | > | tofu | 100 | > > > #+begin_src R :var recipe=recipe :var nutrition=nutrition :colnames yes > sqldf('select * from recipe, nutrition where recipe.type=nutrition.type') > #+end_src > > #+RESULTS: > | type | quty | type | Fiber | Sugar | Protein | Carb | > |----------+------+----------+-------+-------+---------+------| > | onion | 70 | onion | 1.3 | 4.4 | 1.3 | 9 | > | tomatoe | 120 | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 | > | eggplant | 300 | eggplant | 2.5 | 3.2 | 0.8 | 8.6 | > | tofu | 100 | tofu | 0.7 | 0.5 | 6.6 | 1.4 | > > > > This should also be possible but I cannot get it to work now: > > #+begin_src R :var recipe=recipe :var nutrition=nutrition :colnames yes > :prologue sqldf(' :epilogue ') > select * from recipe, nutrition where recipe.type=nutrition.type > #+end_src > > > > > > From: Emacs-orgmode <emacs-orgmode-bounces+mec=stowers....@gnu.org> On Behalf > Of John Kitchin > Sent: Sunday, February 21, 2021 10:24 > To: Tim Cross <theophil...@gmail.com> > Cc: org-mode-email <emacs-orgmode@gnu.org> > Subject: Re: state of the art in org-mode tables e.g. join, etc > > ATTENTION: This email came from an external source. Do not open attachments > or click on links from unknown senders or unexpected emails. > > For fun, here is the sqlite equivalent of the Pandas example using the same > tables as before > > > ** aggregation example > > Examples from https://github.com/tbanel/orgaggregate > > > #+NAME: original > | Day | Color | Level | Quantity | > |-----------+-------+-------+----------| > | Monday | Red | 30 | 11 | > | Monday | Blue | 25 | 3 | > | Tuesday | Red | 51 | 12 | > | Tuesday | Red | 45 | 15 | > | Tuesday | Blue | 33 | 18 | > | Wednesday | Red | 27 | 23 | > | Wednesday | Blue | 12 | 16 | > | Wednesday | Blue | 15 | 15 | > | Thursday | Red | 39 | 24 | > | Thursday | Red | 41 | 29 | > | Thursday | Red | 49 | 30 | > | Friday | Blue | 7 | 5 | > | Friday | Blue | 6 | 8 | > | Friday | Blue | 11 | 9 | > > > #+begin_src sqlite :db ":memory:" :var orgtable=original :colnames yes > drop table if exists testtable; > create table testtable(Day str, Color str, Level int, Quantity int); > .mode csv testtable > .import $orgtable testtable > select Color, count(*) from testtable group by Color; > #+end_src > > #+RESULTS: > | Color | count(*) | > |-------+----------| > | Blue | 7 | > | Red | 7 | > > ** join example > > Example from https://github.com/tbanel/orgtbljoin > > #+name: nutrition > | type | Fiber | Sugar | Protein | Carb | > |----------+-------+-------+---------+------| > | eggplant | 2.5 | 3.2 | 0.8 | 8.6 | > | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 | > | onion | 1.3 | 4.4 | 1.3 | 9.0 | > | egg | 0 | 18.3 | 31.9 | 18.3 | > | rice | 0.2 | 0 | 1.5 | 16.0 | > | bread | 0.7 | 0.7 | 3.3 | 16.0 | > | orange | 3.1 | 11.9 | 1.3 | 17.6 | > | banana | 2.1 | 9.9 | 0.9 | 18.5 | > | tofu | 0.7 | 0.5 | 6.6 | 1.4 | > | nut | 2.6 | 1.3 | 4.9 | 7.2 | > | corn | 4.7 | 1.8 | 2.8 | 21.3 | > > > #+name: recipe > | type | quty | > |----------+------| > | onion | 70 | > | tomatoe | 120 | > | eggplant | 300 | > | tofu | 100 | > > > #+begin_src sqlite :db ":memory:" :var nut=nutrition rec=recipe :colnames yes > drop table if exists nutrition; > drop table if exists recipe; > create table nutrition(type str, Fiber float, Sugar float, Protein float, > Carb float); > create table recipe(type str, quty int); > > .mode csv nutrition > .import $nut nutrition > > .mode csv recipe > .import $rec recipe > > select * from recipe, nutrition where recipe.type=nutrition.type; > #+end_src > > #+RESULTS: > | type | quty | type | Fiber | Sugar | Protein | Carb | > |----------+------+----------+-------+-------+---------+------| > | onion | 70 | onion | 1.3 | 4.4 | 1.3 | 9.0 | > | tomatoe | 120 | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 | > | eggplant | 300 | eggplant | 2.5 | 3.2 | 0.8 | 8.6 | > | tofu | 100 | tofu | 0.7 | 0.5 | 6.6 | 1.4 | > > > John > > ----------------------------------- > Professor John Kitchin > Doherty Hall A207F > Department of Chemical Engineering > Carnegie Mellon University > Pittsburgh, PA 15213 > 412-268-7803 > @johnkitchin > http://kitchingroup.cheme.cmu.edu > > > On Sun, Feb 21, 2021 at 10:03 AM John Kitchin > <jkitc...@andrew.cmu.edu<mailto:jkitc...@andrew.cmu.edu>> wrote: > Thanks Tim and Greg. I had mostly come to the same conclusions that it is > probably best to outsource this. I worked out some examples from the > orgtbljoin and orgaggregate packages with Pandas below, in case anyone is > interested in seeing how it works. A key point is using the ":colnames no" > header args to get the column names for Pandas. It seems like a pretty good > approach. > > * org-mode tables with Pandas > ** Aggregating from a table > > Examples from https://github.com/tbanel/orgaggregate > > > #+NAME: original > | Day | Color | Level | Quantity | > |-----------+-------+-------+----------| > | Monday | Red | 30 | 11 | > | Monday | Blue | 25 | 3 | > | Tuesday | Red | 51 | 12 | > | Tuesday | Red | 45 | 15 | > | Tuesday | Blue | 33 | 18 | > | Wednesday | Red | 27 | 23 | > | Wednesday | Blue | 12 | 16 | > | Wednesday | Blue | 15 | 15 | > | Thursday | Red | 39 | 24 | > | Thursday | Red | 41 | 29 | > | Thursday | Red | 49 | 30 | > | Friday | Blue | 7 | 5 | > | Friday | Blue | 6 | 8 | > | Friday | Blue | 11 | 9 | > > > #+BEGIN_SRC ipython :var data=original :colnames no > import pandas as pd > > pd.DataFrame(data[1:], columns=data[0]).groupby('Color').size() > #+END_SRC > > #+RESULTS: > :results: > # Out [1]: > # text/plain > : Color > : Blue 7 > : Red 7 > : dtype: int64 > :end: > > The categorical stuff here is just to get the days sorted the same way as the > example. It is otherwise not needed. I feel there should be a more clever way > to do this, but didn't think of it. > > #+BEGIN_SRC ipython :var data=original :colnames no > df = pd.DataFrame(data[1:], columns=data[0]) > days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', > 'Sunday'] > df['Day'] = pd.Categorical(df['Day'], categories=days, ordered=True) > > (df > .groupby('Day') > .agg({'Level': 'mean', > 'Quantity': 'sum'}) > .sort_values('Day')) > #+END_SRC > > #+RESULTS: > :results: > # Out [2]: > # text/plain > : Level Quantity > : Day > : Monday 27.5 14 > : Tuesday 43.0 45 > : Wednesday 18.0 54 > : Thursday 43.0 83 > : Friday 8.0 22 > : Saturday NaN 0 > : Sunday NaN 0 > > [[file:/var/folders/3q/ht_2mtk52hl7ydxrcr87z2gr0000gn/T/ob-ipython-htmlMnDA9a.html]] > :end: > > ** Joining tables > > Example from https://github.com/tbanel/orgtbljoin > > #+name: nutrition > | type | Fiber | Sugar | Protein | Carb | > |----------+-------+-------+---------+------| > | eggplant | 2.5 | 3.2 | 0.8 | 8.6 | > | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 | > | onion | 1.3 | 4.4 | 1.3 | 9.0 | > | egg | 0 | 18.3 | 31.9 | 18.3 | > | rice | 0.2 | 0 | 1.5 | 16.0 | > | bread | 0.7 | 0.7 | 3.3 | 16.0 | > | orange | 3.1 | 11.9 | 1.3 | 17.6 | > | banana | 2.1 | 9.9 | 0.9 | 18.5 | > | tofu | 0.7 | 0.5 | 6.6 | 1.4 | > | nut | 2.6 | 1.3 | 4.9 | 7.2 | > | corn | 4.7 | 1.8 | 2.8 | 21.3 | > > > #+name: recipe > | type | quty | > |----------+------| > | onion | 70 | > | tomatoe | 120 | > | eggplant | 300 | > | tofu | 100 | > > > #+BEGIN_SRC ipython :var nut=nutrition recipe=recipe :colnames no > nutrition = pd.DataFrame(nut[1:], columns=nut[0]) > rec = pd.DataFrame(recipe[1:], columns=recipe[0]) > > pd.merge(rec, nutrition, on='type') > #+END_SRC > > #+RESULTS: > :results: > # Out [4]: > # text/plain > : type quty Fiber Sugar Protein Carb > : 0 onion 70 1.3 4.4 1.3 9.0 > : 1 tomatoe 120 0.6 2.1 0.8 3.4 > : 2 eggplant 300 2.5 3.2 0.8 8.6 > : 3 tofu 100 0.7 0.5 6.6 1.4 > :end: > > > John > > ----------------------------------- > Professor John Kitchin > Doherty Hall A207F > Department of Chemical Engineering > Carnegie Mellon University > Pittsburgh, PA 15213 > 412-268-7803 > @johnkitchin > http://kitchingroup.cheme.cmu.edu > > > On Sun, Feb 21, 2021 at 1:54 AM Tim Cross > <theophil...@gmail.com<mailto:theophil...@gmail.com>> wrote: > > Greg Minshall <minsh...@umich.edu<mailto:minsh...@umich.edu>> writes: > >> John, >> >>> Is there a state of the art in using org-tables as little databases >>> with joins and stuff? >> >> i have to admit i do all that with an R code source block. (the dplyr >> package has the relevant joins, e.g. dplyr::inner_join().) and, in R, >> ":colnames yes" as a header argument gives you header lines on results. >> (maybe that's ?now? for "all" languages?) >> > > For really complex joins and ad hoc queries, I would do similar or put > the data into sqlite. For more simple ones, I just define a table which > uses table formulas to extract the values from the other tables - the > downside being the tables need to have the same data ordering or the > formulas need to be somewhat complex. Provided the tables have the same > number of records in the same order, table formulas are usually fairly > easy. > > I did think about writing some elisp functions to use in my table > formulas to make things easier, but then decided I was just re-inventing > and well defined database solution and figured when I need it, just use > sqlite. However, it has been a while since I needed this level of > complexity, so perhaps things have moved on and there are better ways > now. -- Professor John Kitchin Doherty Hall A207F Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213 412-268-7803 @johnkitchin http://kitchingroup.cheme.cmu.edu