WebGL 2.0 supports half-precision float (16bit float) by default.
But now, we must use the following dirty hack using `Uint16Array`.
```js
// ref:
http://stackoverflow.com/questions/32633585/how-do-you-convert-to-half-floats-in-javascript
var toHalf = (function() {
var floatView = new Float32Array(1);
var int32View = new Int32Array(floatView.buffer);
/* This method is faster than the OpenEXR implementation (very often
* used, eg. in Ogre), with the additional benefit of rounding, inspired
* by James Tursa?s half-precision code. */
return function toHalf(val) {
floatView[0] = val;
var x = int32View[0];
var bits = (x >> 16) & 0x8000; /* Get the sign */
var m = (x >> 12) & 0x07ff; /* Keep one extra bit for rounding */
var e = (x >> 23) & 0xff; /* Using int is faster here */
/* If zero, or denormal, or exponent underflows too much for a denormal
* half, return signed zero. */
if (e < 103) {
return bits;
}
/* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
if (e > 142) {
bits |= 0x7c00;
/* If exponent was 0xff and one mantissa bit was set, it means NaN,
* not Inf, so make sure we set one mantissa bit too. */
bits |= ((e == 255) ? 0 : 1) && (x & 0x007fffff);
return bits;
}
/* If exponent underflows but not too much, return a denormal */
if (e < 113) {
m |= 0x0800;
/* Extra rounding may overflow and set mantissa to 0 and exponent
* to 1, which is OK. */
bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1);
return bits;
}
bits |= ((e - 112) << 10) | (m >> 1);
/* Extra rounding. An overflow will set mantissa to 0 and increment
* the exponent, which is OK. */
bits += m & 1;
return bits;
};
}());
var tex = new Uint16Array(4);
tex[0] = toHalf(0.5);
tex[1] = toHalf(1);
tex[2] = toHalf(123);
tex[3] = toHalf(-13);
```
The time has come.
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
_______________________________________________
es-discuss mailing list
[email protected]
https://mail.mozilla.org/listinfo/es-discuss