On 25 Feb 2012, at 20:01, Stephen P. King wrote:

On 2/25/2012 4:31 AM, Bruno Marchal wrote:

On 24 Feb 2012, at 22:59, acw wrote:

On 2/24/2012 12:59, David Nyman wrote:
On 24 February 2012 11:52, acw<a...@lavabit.com>  wrote:

I look at it like this, there's 3 notions: Mind (consciousness, experience),
(Primitive) Matter, Mechanism.
Those 3 notions are incompatible, but we have experience of all 3, mind is the sum of our experience and thus is the most direct thing possible, even if non-communicable, matter is what is directly inferred from our experience (but we don't know if it's the base of everything) and mechanism which means
our experience is lawful (following rules). By induction we build
mechanistic (mathematical) models of matter. We can't really avoid any of the 3: one is primary, the other is directly sensible, the other can be
directly inferred.
However, there are many thought experiments that illustrate that these notions are incompatible - you can have any 2 of them, but never all 3. Take away mind and you have eliminative materialism - denying the existence of mind to save primary matter and its mechanistic appearence. (This tends to be seen as a behavioral COMP). Too bad this is hard to stomach because all our theories are learned through our experiences, thus it's a bit
Take away primitive matter and you have COMP and other platonic versions where matter is a mathematical shadow. Mind becomes how some piece of abstract math feels from the inside. This is disliked by those that wish matter was more fundamental or that it allows too many fantasies into
reality (even if low-measure).
Take away mechanism and you get some magical form of matter which cannot
obey any rules - not even all possible rules

Nice summary. You say "Mind becomes how some piece of abstract math
feels from the inside", which is essentially how Bruno puts it.
However, this must still fall short of an identity claim - i.e. it
seems obvious that mind is no more "identical" to math or computation
than it is to matter, unless that relation is to be re-defined as
"categorically different". Math and mind are still distinct, though correlated. Do you think that such a duality can still be subsumed in
some sort of neutral monism?
Obviously not all computations have minds like ours associated with them. I'm not sure if identity is the right claim, but I'm not sure there's much to gain by adding extra "indirection layers" - it's not that consciousness is associated with some scribbles on a piece of paper, it's associated with some abstract truths and we could say that 3p-wise those truths look like some specific structure we can talk about (using pen and paper or computers), but at the same time, that that abstract structure does have some sensory experience associated with it. Other structure might represent some machines implementing some partial local physics. In that way it's neutral monist. We could try to keep experience separate and supervening on arithmetical truth, but I'm not sure if there's anything to gain by introducing such a dualism - it might make epistemological sense, but I'm not sure it makes sense ontologically. I'm rather unsure of such a move myself, I wonder what Bruno's opinion is on this.

I think that we don't have to introduce an ontological dualism, because the dualism is unavoidable from the machine points of view, if you agree to

1) model belief (by ideally arithmetically and self-referentially correct machine) by Gödel's provability. I can provide many reason to do that, even if it oversimplifies the problem. The interesting things is that it leads to an already very complex "machine's theology". We might take it as a toy theology, but then all theories are sort of toys.

2) to accept that S4 (or T, = S4 without Bp -> BBp) provides the best axiomatic theories for knowledge.

Then it can be shown that the modality (Bp & p) gives a notion of knowledge, i.e. (Bp & p) obeys S4, even a stronger S4Grz theory.

The relevant results here are that G* proves that Bp is equivalent with Bp & p, but G does not prove that, and so, this is a point where the "divine intellect" (G*), the believer (G) and the kower (soul) Bp & p, will completely differ, and this will account for a variety of dualism, unavoidable for the machine.

So yes, this is neutral monism. The TOE is just arithmetic, and the definition above explains why, at the least, the machine will behaves as if dualism was true for her ... until she bet on comp and understand the talk of her own G*, without making the error of taking that talk for granted (because she cannot know, nor believe, nor even explictly express that she is correct).

Hope this might help, but if you want I can explain more on G, G*, S4Grz, and the Z and X logics. Those are not logic invented to solve problems, like in analytical philosophy, but unavoidable nuances brought by the provably correct self-reference logic of machines in theoretical computer science.

Dear Bruno,

I think that it would help all of us if you wrote up more about G, G*, S4Grz, Z and X logics.

It needs familiarity with mathematical logic. I can try, but the real understanding can only come from some work. G and G* axiomatizes completely the propositional laws of Gödel's arithmetical provability provable(x), and its dual consistency notion consistent(x). To explain this we need to explain how we can program a theory about numbers in a language containing only the symbol 0, s, + and *. (and the logical symbol). This is done in the paper of Gödel, except he used a typed set theory instead of arithmetic, like it is done in all textbook. Technically it is long and tedious, with lot of subtle traps, to do that task. It is like programming a high level programming language in a low level assembly language, you can expect bugs. So you need to prove each steps, among many, and you need to ensure that the proofs you do can be done by the system itself.

For example G proves Dt -> ~BDt means that the Löbian entity (= self- referentially correct "rich" machine or non-machine different from "god") can prove their own incompleteness theorem: consistent('1=1') implies non-provable(consistent('1=1').

S4Grz, will be the logic of an intensional variant of provable(x), which is provable('p') & p. We cannot use provable(x) & true(x), as "true" cannot be defined in the language of the entity, so we model it for each arithmetical sentences p by provable('p') & p. (That's the essence of what is clever in the Theaetetus' definition of knowledge, which fits well with the step 6 of UDA, and more generally with the dream argument in metaphysics.

Likewize Bp & Dt, and Bp & Dt & p, are other important variants. I will say more when I get more time, but by searching 'S4Grz' or 'hypostase' in the archive you might find the many explanations I already give. See my papers and the reference therein. Ask precise question when you don't understand, so I can help.

I would also appreciate your comments on this paper by Barry Cooper: 

Here is its Abstract:

"Amongst the huge literature concerning emergence, reductionism and mech- anism, there is a role for analysis of the underlying mathematical constraints. Much of the speculation, confusion, controversy and descriptive verbiage might be clari fied via suitable modelling and theory. The key ingredients we bring to this project are the mathematical notions of defi nability and invariance, a computability theoretic framework in a real-world context, and within that, the modelling of basic causal environments via Turing's 1939 notion of interac- tive computation over a structure described in terms of reals. Useful outcomes are: a re finement of what one understands to be a causal relationship, includ- ing non-mechanistic, irreversible causal relationships; an appreciation of how the mathematically simple origins of incomputability in defi nable hierarchies are materialized in the real world; and an understanding of the powerful ex-
planatory role of current computability theoretic developments."

Interesting, but still not taking into account the comp mind-body problem, or the comp first person indeterminacy. Might say more on this later. It would have been nice I (re)discovered that paper soon, but many thanks :)

I am still not seeing how you define the philosophical terms that you are using, as the way that you are using words, such as "dualism" and "monism" are inconsistent with their usage by others in philosophy.

I use them in the sense of the wiki you did provide to me.

Neutral monism, in the "philosophy of mind" consists in explaining mind and matter, and the relation between, in term of something else.

If your theory is scientific, the something else must be clearly specifiable, that is itself described by a reasonable theory, so that the explanation of mind and body from it makes (sharable) sense.

With comp, in short, a TOE is given by RA (ontological), and its epistemological laws is given by the variants of relative self- reference of all the (Löbian) numbers. Physics consists in some of those variants (hypostases).

Some believe that the numbers belongs to the mind, but with comp it is more natural to define the mind, in a large sense, by the universal numbers imagination.

The mind is, notably, what computer can explore, quasi by definition with comp.

Local computers, like the one you are using right now, are universal number written in physical universal sublanguage of physics. And normally UDA should help you to convince yourself that physics becomes necessarily a sort of projective limit of the mind, with comp.

With comp, the only way to singularize you or your neighborhood consists in layering down the substitution level in the transfinite. Why not? The study of comp can help to build rigorous non comp theory. Sets and hypersets can be helpful for this, indeed. For comp too, probably.



You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com.
To unsubscribe from this group, send email to 
For more options, visit this group at 

Reply via email to