On 01 Mar 2013, at 20:37, meekerdb wrote:

## Advertising

On 3/1/2013 8:55 AM, Bruno Marchal wrote:On 01 Mar 2013, at 16:28, meekerdb wrote:On 3/1/2013 7:13 AM, Bruno Marchal wrote:On 28 Feb 2013, at 20:29, meekerdb wrote:On 2/28/2013 10:59 AM, Stephen P. King wrote:On 2/28/2013 10:33 AM, John Clark wrote:On Wed, Feb 27, 2013 at 1:48 PM, Craig Weinberg <whatsons...@gmail.com> wrote:>> It is a basic law of logic that if X is not Y and X is notnot Y then X is gibberish,> X = alcohol Y = poison. becomes "alcohol is not poison and alcohol isn't not poison"Exactly, and 2 negatives, like "isn't not" cancel each otherout so you get "alcohol is not a poison and alcohol is apoison" which is gibberish just like I said.Alcohol both is and isn't a poison, duh! It is the quantitythat makes the difference. Are you too coarse to notice thatthere are distinctions in the real world that are not subjectto the naive representation of Aristotelian syllogisms.> If there were no free will then nobody could choose toassert anything, abandon anything, or speak anything otherthan gibberish.Cannot comment, don't know what ASCII symbols "free will" mean.And we can safely assume that all text that is emitted fromthe email johnkcl...@gmail.com is only accidentally meaningful,aka gibberish as well, as it's referents where not chosen by aconscious act.I think we're safe in assuming that they are emitted by aprocess that is either random or deterministic.It could also be partially random and partially deterministic.Sure. It's hard to even define what might be meant by"completely" random.Algorithmic incompressability (Chaitin, Martin Loef, Solovay ...)make good attempts. This makes sense with Church's thesis. I guessyou know that. Sequences algorithmically incompressible containsmaximal information, but no way at all to decode it.But those always implicitly assume infinite sequences.

`Not at all. The interest of algorithmic information theory is that it`

`defines a notion of finite random sequence (any sequence whose length`

`is as long as the shortest program to generate it). The notion is not`

`constructive and is defined only up to a constant, but it has its`

`purpose). Infinite random sequence are defined by having all their`

`finite initial segment non compressible.`

I do have have a notion of "completely random" though, I define itby "completely arbitrary".My favorite completely arbitrary sequence is 0000000000000000000...(only zeroes).But to make this arbitrariness precise you need "actualinfinities", and thus Set Theory, even enriched one by some strongaxioms.There are also definitions by a collection of statistical test ofnormality. In that case PI is comepletely random, apparently. Ithink it is still an open problem to prove that, but it has beenproved for Champerknow number Cn, if I remember well. Cn = 0,1234567891011121314151617.... It is normal (pun intended) as itcontains all arbitrary sequences of digits.I thought Karl Popper invented that, except in binary,0100100111000100010110001...

? Bruno

BrentThings are only random in the sense of not being strictlydeterministic.In most of the cases. It is easy to build a sequence of 0 and 1which is partially deterministic, and partially non deterministic(in different senses).Bruno http://iridia.ulb.ac.be/~marchal/ No virus found in this message. Checked by AVG - www.avg.comVersion: 2013.0.2899 / Virus Database: 2641/6138 - Release Date:02/28/13--You received this message because you are subscribed to the GoogleGroups "Everything List" group.To unsubscribe from this group and stop receiving emails from it,send an email to everything-list+unsubscr...@googlegroups.com.To post to this group, send email to everything-l...@googlegroups.com.Visit this group at http://groups.google.com/group/everything-list?hl=en.For more options, visit https://groups.google.com/groups/opt_out.--You received this message because you are subscribed to the GoogleGroups "Everything List" group.To unsubscribe from this group and stop receiving emails from it,send an email to everything-list+unsubscr...@googlegroups.com.To post to this group, send email to everything-list@googlegroups.com.Visit this group at http://groups.google.com/group/everything-list?hl=en.For more options, visit https://groups.google.com/groups/opt_out.

http://iridia.ulb.ac.be/~marchal/ -- You received this message because you are subscribed to the Google Groups "Everything List" group. To unsubscribe from this group and stop receiving emails from it, send an email to everything-list+unsubscr...@googlegroups.com. To post to this group, send email to everything-list@googlegroups.com. Visit this group at http://groups.google.com/group/everything-list?hl=en. For more options, visit https://groups.google.com/groups/opt_out.