Hi Corrado!

Sorry for the slow reply on here, I know we have discussed this
privately, but of course this is the best place for discussion.

1. First half of the presentation; My understanding of the current
'PDE on Manifold' functionality in FEniCS is that the weak form cannot
include terms relating to the geometry of the manifold. i.e. it would
be natural to have terms such as the fundamental form expressed
through UFL which you could then define the shell model.

I have seen someone discuss this idea before here:
http://www.mail-archive.com/[email protected]/msg08932.html

albeit in the context of isoparametric mappings. I think though, that
isoparametric mapping is just relating R^3->E^3 and the shell concept
is relating R^2->E^3, the efforts towards shell models should work
within bringing isoparametric mappings to FEniCS.

@David Ham: I remember David Ham discussed with me that he had a
student working isoparametric mappings, did anything come of it?

2. Second half of the presentation; local projections. As you can see
I have done some simple local projections at the linear algebra level
(ie. post assembly), but I do not think this is a suitable path for
implementing the MITC operators which are significantly more
complicated. One initial option would be to do the full mixed problem,
at the expense of engendering extra unknowns. Also you suggested in
our private email that we could do these local projections using a
custom C++ kernel/assembly routine.

I can see there are still some problems with the RT elements on
manifolds, it would be important for this functionality to work first:

http://fenicsproject.org/pipermail/fenics/2014-March/001340.html

And only two threads up from this one, this discussion seems pertinent:

http://fenicsproject.org/pipermail/fenics/2014-March/001371.html

Another option is that we avoid this second piece of functionality and
go with trying to get DG-Koiter shell models working first which work
which are rotation-free and use standard element constructions.

@Garth Wells: I know this is something Garth Wells is an expert on so
perhaps it is the best path forward for now?

3. Generality. So I know a lot about shells, but not about other PDEs
on manifolds. I remember Douglas Arnold mentioned that any approach
implemented in FEniCS
should be as general as possible. Any comments on this?

Kind regards,
-----
Dr. Jack S. Hale

Research Associate

University of Luxembourg
Campus Kirchberg G005
Phone +352 44 66 44 5236
[email protected]

Latest publications and conferences: http://goo.gl/rNiISG
ORCID: http://orcid.org/0000-0001-7216-861X
Google Scholar: http://scholar.google.com/citations?user=Fx9lQ7MAAAAJ&hl=de
_______________________________________________
fenics mailing list
[email protected]
http://fenicsproject.org/mailman/listinfo/fenics

Reply via email to