I do not recommend this patch for inclusion in master. I used this implementation to quantify the floating pointing error introduced by my next patch, which I think is better suited for general usage, because the it is much faster and the error is very small.
Adds 16-bit depth compatibility to the filter, at the cost of being twice as slower. Signed-off-by: Lucas Clemente Vella <lve...@gmail.com> --- libavfilter/opencl/nlmeans.cl | 28 ++++++++++++++-------------- libavfilter/vf_nlmeans_opencl.c | 6 ++---- 2 files changed, 16 insertions(+), 18 deletions(-) diff --git a/libavfilter/opencl/nlmeans.cl b/libavfilter/opencl/nlmeans.cl index 72bd681fd6..69e630d9fc 100644 --- a/libavfilter/opencl/nlmeans.cl +++ b/libavfilter/opencl/nlmeans.cl @@ -20,7 +20,7 @@ const sampler_t sampler = (CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST); -kernel void horiz_sum(__global uint4 *integral_img, +kernel void horiz_sum(__global ulong4 *integral_img, __read_only image2d_t src, int width, int height, @@ -31,7 +31,7 @@ kernel void horiz_sum(__global uint4 *integral_img, int y = get_global_id(0); int work_size = get_global_size(0); - uint4 sum = (uint4)(0); + ulong4 sum = (ulong4)(0); float4 s2; for (int i = 0; i < width; i++) { float s1 = read_imagef(src, sampler, (int2)(i, y)).x; @@ -39,20 +39,20 @@ kernel void horiz_sum(__global uint4 *integral_img, s2.y = read_imagef(src, sampler, (int2)(i + dx.y, y + dy.y)).x; s2.z = read_imagef(src, sampler, (int2)(i + dx.z, y + dy.z)).x; s2.w = read_imagef(src, sampler, (int2)(i + dx.w, y + dy.w)).x; - sum += convert_uint4((s1 - s2) * (s1 - s2) * 255 * 255); + sum += convert_ulong4((s1 - s2) * (s1 - s2) * 65535 * 65535); integral_img[y * width + i] = sum; } } -kernel void vert_sum(__global uint4 *integral_img, +kernel void vert_sum(__global ulong4 *integral_img, __global int *overflow, int width, int height) { int x = get_global_id(0); - uint4 sum = 0; + ulong4 sum = 0; for (int i = 0; i < height; i++) { - if (any((uint4)UINT_MAX - integral_img[i * width + x] < sum)) + if (any((ulong4)ULONG_MAX - integral_img[i * width + x] < sum)) atomic_inc(overflow); integral_img[i * width + x] += sum; sum = integral_img[i * width + x]; @@ -60,7 +60,7 @@ kernel void vert_sum(__global uint4 *integral_img, } kernel void weight_accum(global float *sum, global float *weight, - global uint4 *integral_img, __read_only image2d_t src, + global ulong4 *integral_img, __read_only image2d_t src, int width, int height, int p, float h, int4 dx, int4 dy) { @@ -75,16 +75,16 @@ kernel void weight_accum(global float *sum, global float *weight, int y = get_global_id(1); int4 xoff = x + dx; int4 yoff = y + dy; - uint4 a = 0, b = 0, c = 0, d = 0; + ulong4 a = 0, b = 0, c = 0, d = 0; uint4 src_pix = 0; // out-of-bounding-box? int oobb = (x - p) < 0 || (y - p) < 0 || (y + p) >= height || (x + p) >= width; - src_pix.x = (int)(255 * read_imagef(src, sampler, (int2)(xoff.x, yoff.x)).x); - src_pix.y = (int)(255 * read_imagef(src, sampler, (int2)(xoff.y, yoff.y)).x); - src_pix.z = (int)(255 * read_imagef(src, sampler, (int2)(xoff.z, yoff.z)).x); - src_pix.w = (int)(255 * read_imagef(src, sampler, (int2)(xoff.w, yoff.w)).x); + src_pix.x = (int)(65535 * read_imagef(src, sampler, (int2)(xoff.x, yoff.x)).x); + src_pix.y = (int)(65535 * read_imagef(src, sampler, (int2)(xoff.y, yoff.y)).x); + src_pix.z = (int)(65535 * read_imagef(src, sampler, (int2)(xoff.z, yoff.z)).x); + src_pix.w = (int)(65535 * read_imagef(src, sampler, (int2)(xoff.w, yoff.w)).x); if (!oobb) { a = integral_img[(y - p) * width + x - p]; b = integral_img[(y + p) * width + x - p]; @@ -93,7 +93,7 @@ kernel void weight_accum(global float *sum, global float *weight, } float4 patch_diff = convert_float4(d + a - c - b); - float4 w = native_exp(-patch_diff / (h * h)); + float4 w = native_exp(-patch_diff * (float4)1.5140274644582053e-05 / (h * h)); float w_sum = w.x + w.y + w.z + w.w; weight[y * width + x] += w_sum; sum[y * width + x] += dot(w, convert_float4(src_pix)); @@ -109,7 +109,7 @@ kernel void average(__write_only image2d_t dst, float w = weight[y * dim.x + x]; float s = sum[y * dim.x + x]; float src_pix = read_imagef(src, sampler, (int2)(x, y)).x; - float r = (s + src_pix * 255) / (1.0f + w) / 255.0f; + float r = (s + src_pix * 65535) / (1.0f + w) / 65535.0f; if (x < dim.x && y < dim.y) write_imagef(dst, (int2)(x, y), (float4)(r, 0.0f, 0.0f, 1.0f)); } diff --git a/libavfilter/vf_nlmeans_opencl.c b/libavfilter/vf_nlmeans_opencl.c index e57b5e0873..82d08d0f3c 100644 --- a/libavfilter/vf_nlmeans_opencl.c +++ b/libavfilter/vf_nlmeans_opencl.c @@ -30,11 +30,9 @@ #include "opencl_source.h" #include "video.h" -// TODO: -// the integral image may overflow 32bit, consider using 64bit - static const enum AVPixelFormat supported_formats[] = { AV_PIX_FMT_YUV420P, + AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUV444P, AV_PIX_FMT_GBRP, }; @@ -129,7 +127,7 @@ static int nlmeans_opencl_init(AVFilterContext *avctx, int width, int height) "average kernel %d.\n", cle); ctx->integral_img = clCreateBuffer(ctx->ocf.hwctx->context, 0, - 4 * width * height * sizeof(cl_int), + 4 * width * height * sizeof(cl_long), NULL, &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "integral image %d.\n", cle); -- 2.27.0 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".