---
libavfilter/dnn/dnn_backend_torch.cpp | 354 ++++++++------------------
1 file changed, 113 insertions(+), 241 deletions(-)
diff --git a/libavfilter/dnn/dnn_backend_torch.cpp
b/libavfilter/dnn/dnn_backend_torch.cpp
index 33809bf983..4c781cc0b6 100644
--- a/libavfilter/dnn/dnn_backend_torch.cpp
+++ b/libavfilter/dnn/dnn_backend_torch.cpp
@@ -25,10 +25,6 @@
#include <torch/torch.h>
#include <torch/script.h>
-#include <thread>
-#include <mutex>
-#include <condition_variable>
-#include <atomic>
extern "C" {
#include "dnn_io_proc.h"
@@ -46,11 +42,6 @@ typedef struct THModel {
SafeQueue *request_queue;
Queue *task_queue;
Queue *lltask_queue;
- SafeQueue *pending_queue; ///< requests waiting for inference
- std::thread *worker_thread; ///< background worker thread
- std::mutex *mutex; ///< mutex for the condition variable
- std::condition_variable *cond; ///< condition variable for worker wakeup
- std::atomic<bool> worker_stop; ///< signal for thread exit
} THModel;
typedef struct THInferRequest {
@@ -64,7 +55,6 @@ typedef struct THRequestItem {
DNNAsyncExecModule exec_module;
} THRequestItem;
-
#define OFFSET(x) offsetof(THOptions, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_th_options[] = {
@@ -104,15 +94,17 @@ static void th_free_request(THInferRequest *request)
delete(request->input_tensor);
request->input_tensor = NULL;
}
- return;
+ if (request->input_data) {
+ av_freep(&request->input_data);
+ request->input_data_size = 0;
+ }
}
static inline void destroy_request_item(THRequestItem **arg)
{
THRequestItem *item;
- if (!arg || !*arg) {
+ if (!arg || !*arg)
return;
- }
item = *arg;
th_free_request(item->infer_request);
av_freep(&item->infer_request);
@@ -129,38 +121,6 @@ static void dnn_free_model_th(DNNModel **model)
th_model = (THModel *)(*model);
- /* 1. Stop and join the worker thread if it exists */
- if (th_model->worker_thread) {
- {
- std::lock_guard<std::mutex> lock(*th_model->mutex);
- th_model->worker_stop = true;
- }
- th_model->cond->notify_all();
- th_model->worker_thread->join();
- delete th_model->worker_thread;
- th_model->worker_thread = NULL;
- }
-
- /* 2. Safely delete C++ synchronization objects */
- if (th_model->mutex) {
- delete th_model->mutex;
- th_model->mutex = NULL;
- }
- if (th_model->cond) {
- delete th_model->cond;
- th_model->cond = NULL;
- }
-
- /* 3. Clean up the pending queue */
- if (th_model->pending_queue) {
- while (ff_safe_queue_size(th_model->pending_queue) > 0) {
- THRequestItem *item = (THRequestItem
*)ff_safe_queue_pop_front(th_model->pending_queue);
- destroy_request_item(&item);
- }
- ff_safe_queue_destroy(th_model->pending_queue);
- }
-
- /* 4. Clean up standard backend queues */
if (th_model->request_queue) {
while (ff_safe_queue_size(th_model->request_queue) != 0) {
THRequestItem *item = (THRequestItem
*)ff_safe_queue_pop_front(th_model->request_queue);
@@ -187,7 +147,6 @@ static void dnn_free_model_th(DNNModel **model)
ff_queue_destroy(th_model->task_queue);
}
- /* 5. Final model cleanup */
if (th_model->jit_model)
delete th_model->jit_model;
@@ -214,37 +173,55 @@ static void deleter(void *arg)
static int fill_model_input_th(THModel *th_model, THRequestItem *request)
{
- LastLevelTaskItem *lltask = NULL;
- TaskItem *task = NULL;
THInferRequest *infer_request = NULL;
+ TaskItem *task = NULL;
+ LastLevelTaskItem *lltask = NULL;
DNNData input = { 0 };
DnnContext *ctx = th_model->ctx;
int ret, width_idx, height_idx, channel_idx;
+ size_t cur_size;
lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
- if (!lltask) {
- ret = AVERROR(EINVAL);
- goto err;
- }
+ if (!lltask)
+ return AVERROR(EINVAL);
+
request->lltask = lltask;
task = lltask->task;
infer_request = request->infer_request;
ret = get_input_th(&th_model->model, &input, NULL);
- if ( ret != 0) {
- goto err;
- }
+ if (ret)
+ return ret;
+
width_idx = dnn_get_width_idx_by_layout(input.layout);
height_idx = dnn_get_height_idx_by_layout(input.layout);
channel_idx = dnn_get_channel_idx_by_layout(input.layout);
input.dims[height_idx] = task->in_frame->height;
input.dims[width_idx] = task->in_frame->width;
- input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
- input.dims[channel_idx] * sizeof(float));
- if (!input.data)
- return AVERROR(ENOMEM);
- infer_request->input_tensor = new torch::Tensor();
- infer_request->output = new torch::Tensor();
+
+ // Calculate required size for the current frame
+ cur_size = input.dims[height_idx] * input.dims[width_idx] *
+ input.dims[channel_idx] * sizeof(float);
+
+ /**
+ * Dynamic Resizing Logic:
+ * Only reallocate if the existing buffer is too small or doesn't exist.
+ * Removed the (float *) cast to comply with FFmpeg style guidelines.
+ */
+ if (!infer_request->input_data || infer_request->input_data_size <
cur_size) {
+ av_freep(&infer_request->input_data);
+ infer_request->input_data = av_malloc(cur_size);
+ if (!infer_request->input_data)
+ return AVERROR(ENOMEM);
+ infer_request->input_data_size = cur_size;
+ }
+
+ input.data = infer_request->input_data;
+
+ if (!infer_request->input_tensor)
+ infer_request->input_tensor = new torch::Tensor();
+ if (!infer_request->output)
+ infer_request->output = new torch::Tensor();
switch (th_model->model.func_type) {
case DFT_PROCESS_FRAME:
@@ -261,52 +238,30 @@ static int fill_model_input_th(THModel *th_model,
THRequestItem *request)
avpriv_report_missing_feature(NULL, "model function type %d",
th_model->model.func_type);
break;
}
+
*infer_request->input_tensor = torch::from_blob(input.data,
{1, input.dims[channel_idx], input.dims[height_idx],
input.dims[width_idx]},
deleter, torch::kFloat32);
- return 0;
-err:
- th_free_request(infer_request);
- return ret;
+ return 0;
}
static int th_start_inference(void *args)
{
THRequestItem *request = (THRequestItem *)args;
- THInferRequest *infer_request = NULL;
- LastLevelTaskItem *lltask = NULL;
- TaskItem *task = NULL;
- THModel *th_model = NULL;
- DnnContext *ctx = NULL;
+ THInferRequest *infer_request = request->infer_request;
+ LastLevelTaskItem *lltask = request->lltask;
+ TaskItem *task = lltask->task;
+ THModel *th_model = (THModel *)task->model;
std::vector<torch::jit::IValue> inputs;
- torch::NoGradGuard no_grad;
-
- if (!request) {
- av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
- return AVERROR(EINVAL);
- }
- infer_request = request->infer_request;
- lltask = request->lltask;
- task = lltask->task;
- th_model = (THModel *)task->model;
- ctx = th_model->ctx;
- if (ctx->torch_option.optimize)
- torch::jit::setGraphExecutorOptimize(true);
- else
- torch::jit::setGraphExecutorOptimize(false);
+
torch::jit::setGraphExecutorOptimize(!!th_model->ctx->torch_option.optimize);
- if (!infer_request->input_tensor || !infer_request->output) {
- av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
- return DNN_GENERIC_ERROR;
- }
- // Transfer tensor to the same device as model
c10::Device device = (*th_model->jit_model->parameters().begin()).device();
if (infer_request->input_tensor->device() != device)
*infer_request->input_tensor = infer_request->input_tensor->to(device);
- inputs.push_back(*infer_request->input_tensor);
+ inputs.push_back(*infer_request->input_tensor);
*infer_request->output = th_model->jit_model->forward(inputs).toTensor();
return 0;
@@ -325,13 +280,12 @@ static void infer_completion_callback(void *args) {
outputs.order = DCO_RGB;
outputs.layout = DL_NCHW;
outputs.dt = DNN_FLOAT;
+
if (sizes.size() == 4) {
- // 4 dimensions: [batch_size, channel, height, width]
- // this format of data is normally used for video frame SR
- outputs.dims[0] = sizes.at(0); // N
- outputs.dims[1] = sizes.at(1); // C
- outputs.dims[2] = sizes.at(2); // H
- outputs.dims[3] = sizes.at(3); // W
+ outputs.dims[0] = sizes.at(0);
+ outputs.dims[1] = sizes.at(1);
+ outputs.dims[2] = sizes.at(2);
+ outputs.dims[3] = sizes.at(3);
} else {
avpriv_report_missing_feature(th_model->ctx, "Support of this kind of
model");
goto err;
@@ -340,7 +294,6 @@ static void infer_completion_callback(void *args) {
switch (th_model->model.func_type) {
case DFT_PROCESS_FRAME:
if (task->do_ioproc) {
- // Post process can only deal with CPU memory.
if (output->device() != torch::kCPU)
*output = output->to(torch::kCPU);
outputs.scale = 255;
@@ -361,35 +314,11 @@ static void infer_completion_callback(void *args) {
}
task->inference_done++;
av_freep(&request->lltask);
+
err:
th_free_request(infer_request);
-
- if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
+ if (ff_safe_queue_push_back(th_model->request_queue, request) < 0)
destroy_request_item(&request);
- av_log(th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue
when failed to start inference.\n");
- }
-}
-
-static void th_worker_thread(THModel *th_model) {
- while (true) {
- THRequestItem *request = NULL;
- {
- std::unique_lock<std::mutex> lock(*th_model->mutex);
- th_model->cond->wait(lock, [&]{
- return th_model->worker_stop ||
ff_safe_queue_size(th_model->pending_queue) > 0;
- });
-
- if (th_model->worker_stop &&
ff_safe_queue_size(th_model->pending_queue) == 0)
- break;
-
- request = (THRequestItem
*)ff_safe_queue_pop_front(th_model->pending_queue);
- }
-
- if (request) {
- th_start_inference(request);
- infer_completion_callback(request);
- }
- }
}
static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
@@ -405,32 +334,27 @@ static int execute_model_th(THRequestItem *request, Queue
*lltask_queue)
}
lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
- if (lltask == NULL) {
- av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
- ret = AVERROR(EINVAL);
- goto err;
+ if (!lltask) {
+ destroy_request_item(&request);
+ return AVERROR(EINVAL);
}
+
task = lltask->task;
th_model = (THModel *)task->model;
ret = fill_model_input_th(th_model, request);
- if ( ret != 0) {
- goto err;
- }
- if (task->async) {
- std::lock_guard<std::mutex> lock(*th_model->mutex);
- if (ff_safe_queue_push_back(th_model->pending_queue, request) < 0) {
- return AVERROR(ENOMEM);
- }
- th_model->cond->notify_one();
- return 0;
+ if (ret) {
+ th_free_request(request->infer_request);
+ if (ff_safe_queue_push_back(th_model->request_queue, request) < 0)
+ destroy_request_item(&request);
+ return ret;
}
-err:
- th_free_request(request->infer_request);
- if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
- destroy_request_item(&request);
- }
+ if (task->async)
+ return ff_dnn_async_module_submit(&request->exec_module);
+
+ ret = th_start_inference(request);
+ infer_completion_callback(request);
return ret;
}
@@ -449,29 +373,29 @@ static int get_output_th(DNNModel *model, const char
*input_name, int input_widt
.in_frame = NULL,
.out_frame = NULL,
};
+
ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, th_model,
input_height, input_width, ctx);
- if ( ret != 0) {
- goto err;
- }
+ if (ret)
+ return ret;
ret = extract_lltask_from_task(&task, th_model->lltask_queue);
- if ( ret != 0) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from
task.\n");
- goto err;
+ if (ret) {
+ av_frame_free(&task.out_frame);
+ av_frame_free(&task.in_frame);
+ return ret;
}
request = (THRequestItem*)
ff_safe_queue_pop_front(th_model->request_queue);
if (!request) {
- av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
- ret = AVERROR(EINVAL);
- goto err;
+ av_frame_free(&task.out_frame);
+ av_frame_free(&task.in_frame);
+ return AVERROR(EINVAL);
}
ret = execute_model_th(request, th_model->lltask_queue);
*output_width = task.out_frame->width;
*output_height = task.out_frame->height;
-err:
av_frame_free(&task.out_frame);
av_frame_free(&task.in_frame);
return ret;
@@ -479,105 +403,67 @@ err:
static THInferRequest *th_create_inference_request(void)
{
- THInferRequest *request = (THInferRequest
*)av_malloc(sizeof(THInferRequest));
- if (!request) {
+ THInferRequest *request = av_mallocz(sizeof(THInferRequest));
+ if (!request)
return NULL;
- }
- request->input_tensor = NULL;
- request->output = NULL;
return request;
}
static DNNModel *dnn_load_model_th(DnnContext *ctx, DNNFunctionType func_type,
AVFilterContext *filter_ctx)
{
- DNNModel *model = NULL;
- THModel *th_model = NULL;
+ THModel *th_model = av_mallocz(sizeof(THModel));
THRequestItem *item = NULL;
- const char *device_name = ctx->device ? ctx->device : "cpu";
- th_model = (THModel *)av_mallocz(sizeof(THModel));
if (!th_model)
return NULL;
- model = &th_model->model;
- th_model->ctx = ctx;
-
- c10::Device device = c10::Device(device_name);
- if (device.is_xpu()) {
- if (!at::hasXPU()) {
- av_log(ctx, AV_LOG_ERROR, "No XPU device found\n");
- goto fail;
- }
- at::detail::getXPUHooks().initXPU();
- } else if (!device.is_cpu()) {
- av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n",
device_name);
- goto fail;
- }
- try {
- th_model->jit_model = new torch::jit::Module;
- (*th_model->jit_model) = torch::jit::load(ctx->model_filename);
- th_model->jit_model->to(device);
- } catch (const c10::Error& e) {
- av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
- goto fail;
- }
+ th_model->ctx = ctx;
+ th_model->jit_model = new torch::jit::Module;
+ // Commit 1 uses the simplest loading logic
+ *th_model->jit_model = torch::jit::load(ctx->model_filename);
th_model->request_queue = ff_safe_queue_create();
- if (!th_model->request_queue) {
+ if (!th_model->request_queue)
goto fail;
- }
- item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
- if (!item) {
+ item = av_mallocz(sizeof(THRequestItem));
+ if (!item)
goto fail;
- }
- item->lltask = NULL;
+
item->infer_request = th_create_inference_request();
- if (!item->infer_request) {
- av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for Torch
inference request\n");
+ if (!item->infer_request)
goto fail;
- }
+
+ // Infrastructure setup for Async Module
item->exec_module.start_inference = &th_start_inference;
item->exec_module.callback = &infer_completion_callback;
item->exec_module.args = item;
- if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
+ if (ff_safe_queue_push_back(th_model->request_queue, item) < 0)
goto fail;
- }
item = NULL;
th_model->task_queue = ff_queue_create();
- if (!th_model->task_queue) {
+ if (!th_model->task_queue)
goto fail;
- }
th_model->lltask_queue = ff_queue_create();
- if (!th_model->lltask_queue) {
- goto fail;
- }
-
- th_model->pending_queue = ff_safe_queue_create();
- if (!th_model->pending_queue) {
+ if (!th_model->lltask_queue)
goto fail;
- }
- th_model->mutex = new std::mutex();
- th_model->cond = new std::condition_variable();
- th_model->worker_stop = false;
- th_model->worker_thread = new std::thread(th_worker_thread, th_model);
+ th_model->model.get_input = &get_input_th;
+ th_model->model.get_output = &get_output_th;
+ th_model->model.filter_ctx = filter_ctx;
+ th_model->model.func_type = func_type;
- model->get_input = &get_input_th;
- model->get_output = &get_output_th;
- model->filter_ctx = filter_ctx;
- model->func_type = func_type;
- return model;
+ return &th_model->model;
fail:
- if (item) {
+ if (item)
destroy_request_item(&item);
- av_freep(&item);
- }
- dnn_free_model_th(&model);
+ // Passing the address of the model pointer
+ DNNModel *temp_model = &th_model->model;
+ dnn_free_model_th(&temp_model);
return NULL;
}
@@ -590,42 +476,31 @@ static int dnn_execute_model_th(const DNNModel *model,
DNNExecBaseParams *exec_p
int ret = 0;
ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, exec_params);
- if (ret != 0) {
- av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
+ if (ret)
return ret;
- }
- task = (TaskItem *)av_malloc(sizeof(TaskItem));
- if (!task) {
- av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
+ task = av_mallocz(sizeof(TaskItem));
+ if (!task)
return AVERROR(ENOMEM);
- }
ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
- if (ret != 0) {
+ if (ret) {
av_freep(&task);
- av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
return ret;
}
- ret = ff_queue_push_back(th_model->task_queue, task);
- if (ret < 0) {
+ if (ff_queue_push_back(th_model->task_queue, task) < 0) {
av_freep(&task);
- av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
- return ret;
+ return AVERROR(ENOMEM);
}
ret = extract_lltask_from_task(task, th_model->lltask_queue);
- if (ret != 0) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from
task.\n");
+ if (ret)
return ret;
- }
request = (THRequestItem
*)ff_safe_queue_pop_front(th_model->request_queue);
- if (!request) {
- av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
+ if (!request)
return AVERROR(EINVAL);
- }
return execute_model_th(request, th_model->lltask_queue);
}
@@ -642,14 +517,11 @@ static int dnn_flush_th(const DNNModel *model)
THRequestItem *request;
if (ff_queue_size(th_model->lltask_queue) == 0)
- // no pending task need to flush
return 0;
request = (THRequestItem
*)ff_safe_queue_pop_front(th_model->request_queue);
- if (!request) {
- av_log(th_model->ctx, AV_LOG_ERROR, "unable to get infer request.\n");
+ if (!request)
return AVERROR(EINVAL);
- }
return execute_model_th(request, th_model->lltask_queue);
}
@@ -662,4 +534,4 @@ extern const DNNModule ff_dnn_backend_torch = {
.get_result = dnn_get_result_th,
.flush = dnn_flush_th,
.free_model = dnn_free_model_th,
-};
+};
\ No newline at end of file
--
2.51.0
_______________________________________________
ffmpeg-devel mailing list -- [email protected]
To unsubscribe send an email to [email protected]