The following function should do what you want:
DivisorsPol := P ->
Set(Combinations(Factors(P)),facts->Product(facts,One(P)));
-- Does this help you?
Best regards,
Stefan
Am 21.01.2018 um 22:47 schrieb lopo apelo kosho:
Dear friends, Good evening, I am still in need for a help and I hope that some
one will have time to help. Trying to adapt the similar command for integers I
came up with the following;
DivisorsPol:=function( n)
local divisors, factors,divs;
factors := Factors ( n );
# recursive function to compute thedivisors
divs := function ( i, m )
if Length(factors(m)) < i then return [ m ];
elif Degree(m/factors(i))=0 then return divs(i+1,m*factors[i]);
else return Concatenation( divs(i+1,m),divs(i+1,m*factors[i]) );
fi;
end;
divisors :=divs( 1, 1);
Sort( divisors );
return Immutable(divisors);
end;
Unfortunately it does not work. Any suggestions Please!All the best,Paul.
_______________________________________________
Forum mailing list
Forum@gap-system.org
https://mail.gap-system.org/mailman/listinfo/forum
_______________________________________________
Forum mailing list
Forum@gap-system.org
https://mail.gap-system.org/mailman/listinfo/forum