Dear Zohreh, Any nontrivial semidirect product 2^3:7 is isomorphic to the affine linear group AGL(1,8). There is a nice post on math overflow that explains why the Schur multiplier is trivial: https://mathoverflow.net/questions/191885/what-is-the-schur-multiplier-of-the-affine-linear-group-agln-q
To compute it in GAP, you can use AbelianInvariantsMultiplier. Note that this can be slow for large groups: gap> #Create the semidirect product gap> V:=GF(2)^3; ( GF(2)^3 ) gap> H:=SylowSubgroup(GL(3,2),7); Group([ <an immutable 3x3 matrix over GF2> ]) gap> G:=SemidirectProduct(H,V); <matrix group of size 56 with 2 generators> gap> gap> #Verify it has the correct form gap> StructureDescription(G); "(C2 x C2 x C2) : C7" gap> gap> #Compute the Schur multiplier gap> AbelianInvariantsMultiplier(G); [ ] For larger groups, the cohomolo package by Derek Holt works much faster, computing the p-parts of the Schur multiplier one piece at a time. To use it, we first have to find an isomorphic permutation group: gap> LoadPackage("cohomolo"); ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── Loading cohomolo 1.6.6 (Computing Cohomology groups and Schur Multipliers) by Derek Holt (http://homepages.warwick.ac.uk/staff/D.F.Holt/). Homepage: https://gap-packages.github.io/cohomolo ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── true gap> gap> #Find an isomorphic permutation group gap> g:=Image( IsomorphismPermGroup(G) ); Group([ (3,5,11,7,15,13,9)(4,6,12,8,16,14,10), (2,10)(4,12)(6,14)(8,16) ]) gap> gap> #Find all prime divisors of the order of g gap> primes:=PrimeDivisors(Size(g)); [ 2, 7 ] gap> gap> #For each prime dividing the order of g, compute the p-part of the Schur multiplier gap> mult:=[];; gap> for p in primes do > #create a CHR object as required by the "cohomolo" package > chr:=CHR(g,p);; > #compute the p-part of the Schur multiplier and add it to our list > mult:=Concatenation(mult,SchurMultiplier(chr));; > od; The Sylow p-subgroup of the group is cyclic - so the multiplier is trivial. gap> gap> #Display the result gap> mult; [ ] I hope this helps! Best regards, Joey Iverson Assistant Professor Department of Mathematics Iowa State University On 6/18/19, 1:18 PM, "zohreh sayanjali" <zohrehsayanj...@gmail.com> wrote: Dear GAP Forum, I need to calculate the Schur multiplier of the group " 2^3:7" by GAP. I would really appreciate it if you help me to find it. Regards, Zohreh sayanjali _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum