Dear Bill, One such algorithm is implemented in GAP package SONATA which works as under: gap> LoadPackage("sonata");: gap> D16 := DihedralGroup( 16 ); <pc group of size 16 with 4 generators> gap> S := Subgroups( D16 ); [ Group([ ]), Group([ f4 ]), Group([ f1 ]), Group([ f1*f3 ]), Group([ f1*f4 ]), Group([ f1*f3*f4 ]), Group([ f1*f2 ]), Group([ f1*f2*f3 ]), Group([ f1*f2*f4 ]), Group([ f1*f2*f3*f4 ]), Group([ f4, f3 ]), Group([ f4, f1 ]), Group([ f1*f3, f4 ]), Group([ f4, f1*f2 ]), Group([ f1*f2*f3, f4 ]), Group([ f4, f3, f1 ]), Group([ f4, f3, f2 ]), Group([ f4, f3, f1*f2 ]), Group([ f4, f3, f1, f2 ]) ] For permutation groups, gap> a:=AllSmallGroups(10); [ <pc group of size 10 with 2 generators>, <pc group of size 10 with 2 generators> ] gap> iso:=IsomorphismPermGroup(a[1]); <action isomorphism> gap> h:=Image(iso); Group([ (1,2)(3,10)(4,9)(5,8)(6,7), (1,3,5,7,9)(2,4,6,8,10) ]) gap> S:= Subgroups( h ); [ Group(()), Group([ (1,2)(3,10)(4,9)(5,8)(6,7) ]), Group([ (1,8)(2,7)(3,6)(4,5)(9,10) ]), Group([ (1,4)(2,3)(5,10) (6,9)(7,8) ]), Group([ (1,10)(2,9)(3,8)(4,7)(5,6) ]), Group([ (1,6)(2,5)(3,4)(7,10)(8,9) ]), Group([ (1,3,5,7,9) (2,4,6,8,10) ]), Group([ (1,3,5,7,9)(2,4,6,8,10), (1,2)(3,10)(4,9)(5,8)(6,7) ]) ] gap> a:=AllSmallGroups(1000);; gap> iso:=IsomorphismPermGroup(a[1]); <action isomorphism> gap> h:=Image(iso); <permutation group of size 1000 with 6 generators> gap> S:= Subgroups( h );; gap> Size(last); 168 Muhammad Shah
________________________________ From: Bill Allombert <bill.allomb...@math.u-bordeaux.fr> Sent: Friday, September 20, 2019 3:30 AM To: GAP Forum <forum@gap-system.org> Subject: [GAP Forum] algorithms for subgroups of a permutation group Dear Forum, I have a question about computational group theory: Is there an algorithm to compute all the subgroups of a permutation group ? I know there is an algorithm for solvable groups. However I am looking for an algorithm that would work for small permutation groups (say degree <=100, order <=1000) preferably without having precomputed tables for all perfect groups. Thanks, Bill _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum