Dear all, Could you give me an idea, how could I realize the following procedure:
Let A be a n*n matrix over a non-prime field GF(p^k) (say, A in GL(2,4)). I need to generate matrix B of size nk*nk over GF(p) such that each k*k block in it is an element in GF(p^k) realized as k*k matrices over GF(p) and the element corresponds to an element of A. For example, if A = [ [Z(2^2),0*Z(2^2)], [0*Z(2^2),Z(2^2)^(-0)] ] and Z(2^2) = [ [a,b], [c,d] ]; Z(2^2)^(-1)= [ [x,y], [z,t] ], then B= [ [a,b,0*Z(2),0*Z(2)], [c,d,0*Z(2),0*Z(2)], [0*Z(2),0*Z(2),x,y], [0*Z(2),0*Z(2),z,t] ]. All the best, Evgeny. -- Evgeny Vdovin Sobolev Institute of Mathematics pr-t Acad. Koptyug, 4 630090, Novosibirsk, Russia Office +7 383 3297663 Fax +7 383 3332598 _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum