You can use G:=SL(2,5); irr:=IrreducibleRepresentations(G,GF(11)); degrees:=List(irr,f->Size(One(G)^f));
Best wishes, Benjamin Am 22.01.21 um 16:22 schrieb D Brozovic:
Dear all, The generic question is how one might use GAP4 to determine explicit inequivalent representations of SL(2,5) over GF(11). Strictly speaking, I am interested in 3 dimensional irreducible representations of SL(2,5) over GF(11), and the orbit structure of the action of SL(2.5) on the natural module. Thanks in advance. Doug
_______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum