On Sat, Apr 30, 2022 at 4:44 PM Bill Allombert <bill.allomb...@math.u-bordeaux.fr> wrote: > > On Sat, Apr 30, 2022 at 03:21:10PM +0800, Hongyi Zhao wrote: > > Hi GAP team, > > > > I use the following code snippet to compute the irreducible characters > > of a finitely presented group: > > > > So, I want to get a pretty printed result with the rows correspond to > > irreducible representations, and the columns correspond to conjugacy > > classes of group elements. > > > > Are there any clues to achieve this goal? > > Use Display(CharacterTable(g)); > > gap> G:=CyclicGroup(8); > <pc group of size 8 with 3 generators> > gap> Display(CharacterTable(G)); > CT1 > > 2 3 3 3 3 3 3 3 3 > > 1a 8a 4a 2a 8b 8c 4b 8d > > X.1 1 1 1 1 1 1 1 1 > X.2 1 -1 1 1 -1 -1 1 -1 > X.3 1 A -1 1 -A A -1 -A > X.4 1 -A -1 1 A -A -1 A > X.5 1 B A -1 -/B -B -A /B > X.6 1 -B A -1 /B B -A -/B > X.7 1 -/B -A -1 B /B A -B > X.8 1 /B -A -1 -B -/B A B > > A = E(4) > = Sqrt(-1) = i > B = E(8)
See the following results in my example gap> f := FreeGroup( "p", "q");; gap> g42:= f/[ [ f.1 , f.1^-1 ], [ f.2 , f.2^-1 ], [ f.2 *f.1, f.1 *f.2 ] ]; <fp group on the generators [ p, q ]> gap> Display(CharacterTable(g42)); CT1 2 2 2 2 2 1a 2a 2b 2c 2P 1a 1a 1a 1a X.1 1 1 1 1 X.2 1 -1 -1 1 X.3 1 -1 1 -1 X.4 1 1 -1 -1 Now, I'm confused on the following lines shown above: 2 2 2 2 2 1a 2a 2b 2c 2P 1a 1a 1a 1a 1. What's the meaning of all 2's in this line? 2 2 2 2 2 2. What's the meaning of 1a, 2a, 2b, 2c, and 2P, respectively? > Cheers, > Bill. _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum