Hi again,

> Am 30.04.2022 um 12:07 schrieb Hongyi Zhao <hongyi.z...@gmail.com>:


[...]
> 
> It does the trick, as shown below:
> 
> gap> g:=CyclicGroup(IsFpGroup,8);
> <fp group of size 8 on the generators [ a ]>
> gap> ir:=IrreducibleRepresentations(g);
> [ Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ E(8)^3 ] ], [ [ E(4) ] ], [ [ -1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -E(8)^3 ] ], [ [ E(4) ] ], [ [ -1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -E(8) ] ], [ [ -E(4) ] ], [ [ -1 ] ] ],
>  Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ E(8) ] ], [ [ -E(4) ] ], [ [ -1 ] ] ] ]
> gap> AreRepsIsomorphic(ir[1],ir[2]);
> false
> 
> Another question: How to obtain a pretty formatted output of
> IrreducibleRepresentations?

What would you consider "pretty formatted" ? That seems quite subjective? You'd 
probably best of writing your own function for doing that.

Regards
Max

_______________________________________________
Forum mailing list
Forum@gap-system.org
https://mail.gap-system.org/mailman/listinfo/forum

Reply via email to