Hi again, > Am 30.04.2022 um 12:07 schrieb Hongyi Zhao <hongyi.z...@gmail.com>:
[...] > > It does the trick, as shown below: > > gap> g:=CyclicGroup(IsFpGroup,8); > <fp group of size 8 on the generators [ a ]> > gap> ir:=IrreducibleRepresentations(g); > [ Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -E(4) ] ], [ [ -1 ] ], [ [ 1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ E(8)^3 ] ], [ [ E(4) ] ], [ [ -1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -E(8)^3 ] ], [ [ E(4) ] ], [ [ -1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ -E(8) ] ], [ [ -E(4) ] ], [ [ -1 ] ] ], > Pcgs([ a^7, a^2, a^4 ]) -> [ [ [ E(8) ] ], [ [ -E(4) ] ], [ [ -1 ] ] ] ] > gap> AreRepsIsomorphic(ir[1],ir[2]); > false > > Another question: How to obtain a pretty formatted output of > IrreducibleRepresentations? What would you consider "pretty formatted" ? That seems quite subjective? You'd probably best of writing your own function for doing that. Regards Max _______________________________________________ Forum mailing list Forum@gap-system.org https://mail.gap-system.org/mailman/listinfo/forum