Dear Giulio, I can't comment on GAP3, which I'm too young to have used :), but with GAP4 the following gives you a permutation action:
gap> G:=SmallGroup(12,1); <pc group of size 12 with 3 generators> gap> AutG:=AutomorphismGroup(G); <group of size 12 with 3 generators> gap> C:=ConjugacyClasses(G); [ <identity> of ...^G, f1^G, f2^G, f3^G, f1*f2^G, f2*f3^G ] gap> Action(AutG,C,function(pnt,g)
return ConjugacyClass(G,Representative(pnt)^g); end);
Group([ (), (2,5), () ]) Action() takes a group, a set, and a function which describes the action of an element of the group on an element of the set. The function I put here takes a conjugacy class, picks a representative, acts on it, and re-constructs a conjugacyclass. Best, L -- Laurent Bartholdi \ laurent.bartholdi<at>gmail<dot>com EPFL SB SMA IMB MAD \ Téléphone: +41 21-6935458 Station 8 \ Secrétaire: +41 21-6935471 CH-1015 Lausanne, Switzerland \ Fax: +41 21-6930339 _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum