There may well be better ways of doing this, but:
On 29 Jan 2009, at 09:10, Don King wrote:
Hello,
I am having difficulty in converting cycles to the list of
permutations.
gap> s := SymmetricGroup(6);
Sym( [ 1 .. 6 ] )
gap> ConjugacyClasses(s);
[ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2)(3,4)(5,6)^G, (1,2,3)^G, (1,2,3)
(4,5)^G,
(1,2,3)(4,5,6)^G, (1,2,3,4)^G, (1,2,3,4)(5,6)^G, (1,2,3,4,5)^G,
(1,2,3,4,5,6)^G ]
gap> c := ConjugacyClass(s,(1,2,3)(4,5));
(1,2,3)(4,5)^G
gap> Size(c);
120
c isn't a list, so do:
l := List(c);
then
gap> for i in [1.. 120] do ListPerm(c);
for i in [1..120] do ListPerm(l[i]); od;
Note that won't print anything, do Print(ListPerm(l[i])) to see what's
going on.
Chris
(Syntax Error !)
What I'd like to do is to get 120 list of permutations for above
formatted like [1, 3, 4, 5, 2, 6], [ 2,3, 4, 5, 6, 1],etc.
Any help will be highly appreciated.
Don
__________________________________________________________________
Instant Messaging, free SMS, sharing photos and more... Try the new
Yahoo! Canada Messenger at http://ca.beta.messenger.yahoo.com/
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum