Dear Forum, Is there a way to define in GAP an isomorphism between an additive group and a multiplicative one?
Anvita ------------------------------------------------------------------- gap> A:=GF(3)^2;; gap> a:=[[1,0],[0,1]]*Z(3)^0;; gap> IsAdditiveGroup(A); true gap> B:=Group((1,2,3),(4,5,6));; gap> b:=[(1,2,3),(4,5,6)];; gap> gap> GroupHomomorphismByImages(A,B,a,b); Error, no method found! For debugging hints type ?Recovery from NoMethodFound Error, no 1st choice method found for `GroupGeneralMappingByImages' on 4 arguments called from GroupGeneralMappingByImages( G, H, Ggens, Hgens ) called from <function>( <arguments> ) called from read-eval-loop Entering break read-eval-print loop ... you can 'quit;' to quit to outer loop, or you can 'return;' to continue brk> ------------------------------------------------------------------- _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum