Dear Sandeep, dear Forum, On 22 Apr 2010, at 06:55, Sandeep Murthy wrote:
> Hi. > > I've written a simple GAP program that prints a table of information > in 3 columns for a given group: > > 1st column - shows distinct orders of proper subgroups realized by the group > 2nd column - shows the number of distinct subgroups of the group of the > order given > by column 1 > 3rd column - shows a representative conjugacy class of the subgroup > > So the output for the the alternating group Alt(5) currently prints out > like this: > > Order Number Of Subgroups Subgroup Conjugacy > Class > -------- ----------------- ---------------------------- > > 2 15 > Group([ (2,3)(4,5) ]) > 3 10 > Group([ (3,4,5) ]) > 4 5 > Group([ (2,3)(4,5), (2,4)(3,5) ]) > 5 6 > Group([ (1,2,3,4,5) ]) > 6 10 > Group([ (3,4,5), (1,2)(4,5) ]) > 10 6 > Group([ (1,2,3,4,5), (2,5)(3,4) ]) > 12 5 > Group([ (2,3)(4,5), (2,4)(3,5), (3,4,5) ]) > > Entries of column 1 and 2 are aligned with the headers, but the problem is > that > the third column entries are not aligned with the header. I tried to give > each > conjugacy class a string name, and then offset the print function exactly > so that the > name is aligned with the header, but the String( object ) methods doesn't > seem to work > for elements of ConjugacyClassesSubgroups( group ). > > Anyone have any suggestions? > > Sincerely, Sandeep. If I am understanding this correctly, you want to say that String applied to a conjugacy class of subgroups produces the output that is superfluous for your purposes (see below). Could you apply String to a representative of a conjugacy class? Then it will probably return a string containing exactly what you need: gap> G:=AlternatingGroup(5); Alt( [ 1 .. 5 ] ) gap> cc:=ConjugacyClassesSubgroups(G); [ Group( () )^G, Group( [ (2,3)(4,5) ] )^G, Group( [ (3,4,5) ] )^G, Group( [ (2,3)(4,5), (2,4)(3,5) ] )^G, Group( [ (1,2,3,4,5) ] )^G, Group( [ (3,4,5), (1,2)(4,5) ] )^G, Group( [ (1,2,3,4,5), (2,5)(3,4) ] )^G, Group( [ (2,3)(4,5), (2,4)(3,5), (3,4,5) ] )^G, AlternatingGroup( [ 1 .. 5 ] )^G ] gap> String(cc[2]); "ConjugacyClassSubgroups(AlternatingGroup( [ 1 .. 5 ] ),Group( \n[ (2,3)(4,5) \ ] ))" gap> String(Representative(cc[2])); "Group( [ (2,3)(4,5) ] )" Hope this helps, Alexander _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum