Dear Forum, I am interested in obtaining Schreier system of representatives of right cosets of a subgroup of a finitely presented group. http://eom.springer.de/S/s083400.htm
Let G = F/R, H< G. Could I be sure that RightTransversal(G,H) will give me such system? I guess that there could be silent assumption that generators(alphabet) are the generators of a free group F. If I couldn't, is there other way to be sure? It is working like that for any example which I tried. For Example: F:=FreeGroup("a","b","x");; G:=F/[F.1^2,F.2^4,F.3^2,(F.1*F.2)^3,F.3*F.1*F.3*(F.1*F.2*F.1*F.2^-1*F.1),F.3*F.2*F.3*(F.2^-1*F.1*F.2*F.2*F.2^-1*F.1*F.2)];; AssignGeneratorVariables(G); K:=FreeGroup("x1","e1","c0","c1","c2");; L:=K/[K.1^2, K.3^2, K.4^2, K.5^2, K.1*K.2, (K.3*K.4)^2, (K.4*K.5)^4, K.1*K.5*K.1*K.3];; AssignGeneratorVariables(L); theta:=GroupHomomorphismByImages(L,G,[x1,e1,c0,c1,c2],[a,a,x,x*b^-1*a*b,x*b^-1*a*b^2]);; J:=Kernel(theta);; C:=AsList(RightTransversal(L,J)); which gives me Schreier system: [<identity ...>, x1, c0, c1, c2, x1*c0, x1*c1, x1*c2, c0*c1, c0*c2, c1*x1, c1*c2, c2*c0, c2*c1, x1*c0*c1, x1*c0*c2, x1*c1*x1, x1*c1*c2, x1*c2*c0, x1*c2*c1, c0*c1*x1, c0*c1*c2, c0*c2*c0, c0*c2*c1, c1*x1*c0, c1*x1*c1, c1*c2*c0, c1*c2*c1, c2*c0*c1, c2*c1*x1, c2*c1*c2, x1*c0*c1*x1, x1*c0*c1*c2, x1*c0*c2*c0, x1*c0*c2*c1, x1*c1*x1*c0, x1*c1*x1*c1, x1*c2*c0*c1, x1*c2*c1*x1, x1*c2*c1*c2, c0*c1*x1*c0, c0*c1*x1*c1, c0*c1*c2*c0, c0*c2*c0*c1, c1*x1*c0*c1, c1*c2*c1*c2, c2*c0*c1*x1, x1*c0*c2*c0*c1 ] Best regards Bartosz Putrycz _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum