Hi, I believe I found a bug in CharacterTable.
It is concluded that there exist 3-modular spin irreducible representations of dimension 1440-144=1296 of the Schur cover of the symmetric group of degree 11 in the paper: Morris, A. O.(4-WALA); Yaseen, A. K.(4-WALA) Decomposition matrices for spin characters of symmetric groups. Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 1-2, 145 However, in gap, the command: c:=CharacterTable("2.A11.2") mod 3; Display(c); displays the following infomation on the spin irreducible representations: X.28 32 -32 . . . . . -8 8 2 -2 4 -4 . . -1 1 . X.29 144 -144 . . . . . -16 16 -1 1 4 -4 . . 1 -1 . X.30 144 -144 . . . . . -16 16 -1 1 4 -4 . . 1 -1 . X.31 528 -528 . . . . . -12 12 -2 2 -4 4 . . . . . X.32 640 -640 . . . . . 20 -20 . . -4 4 . . 2 -2 . X.33 1440 -1440 . . . . . 20 -20 . . -2 2 . . -1 1 . X.34 1440 -1440 . . . . . 20 -20 . . -2 2 . . -1 1 . I believe X.33 and X.34 are not irreducible and contain X.29 and X.30 as their composition factors. Sincerely, Shunsuke Tsuchioka _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum