Dear Forum, Dung Duong asked:
> I have a group G:=AutomorphismGroup(PSL(2,9)). One of its Maximal subgroup > is $M =N_G(D_8)$. And I would like to compute the order of this group. So I > did as follows : > > > G:=AutomorphismGroup(PSL(2,9)); > > H:=DihedralGroup(8); > > Normalizer(G,H); > > But it does not work. I think that somehow I need to "embed" H as a subgroup > of G. But I dont know how. > > Please tell me how I can do. You can proceed as follows: 1. Enter your groups: gap> G := AutomorphismGroup(PSL(2,9)); <group with 4 generators> gap> H := DihedralGroup(IsPermGroup,8); Group([ (1,2,3,4), (2,4) ]) 2. Switch to an isomorphic permutation group, as computations in permutation groups are faster: gap> phi := IsomorphismPermGroup(G); MappingByFunction( <group with 4 generators>, Group( [ (3,9,4,6)(5,10,8,7), (1,2,4)(5,6,8)(7,9,10), (1,2)(3,10,6,5,4,7,9,8), (1,2)(5,8)(7,10) ]), function( auto ) ... end, function( elm ) ... end ) gap> Gp := Image(phi); Group([ (3,9,4,6)(5,10,8,7), (1,2,4)(5,6,8)(7,9,10), (1,2)(3,10,6,5,4,7,9,8), (1,2)(5,8)(7,10) ]) 3. Compute all embeddings of H into G up to conjugacy: gap> embs := IsomorphicSubgroups(Gp,H); [ [ (1,3), (1,4)(2,3) ] -> [ (1,4)(2,10)(3,9)(5,6)(7,8), (1,4)(2,8)(3,6)(5,10)(7,9) ], [ (1,3), (1,4)(2,3) ] -> [ (1,4)(2,8)(3,6)(5,10)(7,9), (1,4)(6,8)(9,10) ], [ (1,3), (1,4)(2,3) ] -> [ (1,2)(3,4)(5,7)(8,10), (2,3)(5,7)(6,8)(9,10) ], [ (1,3), (1,4)(2,3) ] -> [ (2,5)(3,10)(4,6)(7,9), (1,4)(6,8)(9,10) ], [ (1,3), (1,4)(2,3) ] -> [ (1,8)(3,10)(7,9), (1,4)(6,8)(9,10) ] ] 4. Compute the corresponding normalizers and find out which of them are maximal subgroups of G: gap> norms := List(embs,emb->Normalizer(Gp,Image(emb))); [ Group([ (2,7,3,5)(6,9,8,10), (2,3)(5,7)(6,8)(9,10), (1,4)(2,10)(3,9)(5,6)(7,8), (1,4)(5,7)(6,10)(8,9), (5,7)(6,9)(8,10) ]), Group([ (2,8,3,6)(5,10,7,9), (2,3)(5,7)(6,8)(9,10), (1,4)(2,8)(3,6)(5,10)(7,9), (2,5,3,7)(6,10,8,9) ]), Group([ (2,3)(5,7)(6,8)(9,10), (1,3)(2,4)(5,7)(6,9), (1,2)(3,4)(5,7)(8,10), (2,3)(6,10)(8,9), (1,6,2,10,4,9,3,8) ]), Group([ (1,4)(6,8)(9,10), (1,8)(3,7)(4,6)(9,10), (2,5)(3,10)(4,6)(7,9), (1,8)(3,10)(7,9) ]), Group([ (1,4)(6,8)(9,10), (3,9)(4,6)(7,10), (1,8)(3,10)(7,9), (1,3,6,9,8,7,4,10), (2,5)(3,10)(4,6)(7,9) ]) ] gap> maxes := MaximalSubgroupClassReps(Gp); [ Group([ (5,7)(6,9)(8,10), (3,4)(5,8)(6,9)(7,10), (3,6,4,9)(5,7,8,10), (3,5,4,8)(6,10,9,7), (1,2)(5,8)(7,10) ]), Group([ (1,2)(3,5)(4,8)(6,10)(7,9), (1,5,9,6,8)(2,3,7,10,4), (3,4)(5,8)(6,9)(7,10), (3,7,4,10)(5,9,8,6) ]), Group([ (2,9,6)(3,8,10)(4,7,5), (5,7)(6,9)(8,10), (2,8,5)(3,7,6)(4,9,10), (3,4)(5,10)(7,8), (3,9,4,6)(5,10,8,7), (3,5,4,8)(6,10,9,7) ]), Group([ (1,8)(3,7)(4,6)(9,10), (1,4,3,6,5)(2,9,8,10,7), (5,7)(6,9)(8,10) ]), Group([ (1,8)(3,7)(4,6)(9,10), (1,4,3,6,5)(2,9,8,10,7), (3,5,4,8)(6,10,9,7) ]), Group([ (1,8)(3,7)(4,6)(9,10), (1,4,3,6,5)(2,9,8,10,7), (3,5,6,7,4,8,9,10) ]) ] gap> Mp := Filtered(norms,N->ForAny(maxes,M->IsConjugate(Gp,N,M))); [ Group([ (2,7,3,5)(6,9,8,10), (2,3)(5,7)(6,8)(9,10), (1,4)(2,10)(3,9)(5,6)(7,8), (1,4)(5,7)(6,10)(8,9), (5,7)(6,9)(8,10) ]), Group([ (2,3)(5,7)(6,8)(9,10), (1,3)(2,4)(5,7)(6,9), (1,2)(3,4)(5,7)(8,10), (2,3)(6,10)(8,9), (1,6,2,10,4,9,3,8) ]), Group([ (1,4)(6,8)(9,10), (3,9)(4,6)(7,10), (1,8)(3,10)(7,9), (1,3,6,9,8,7,4,10), (2,5)(3,10)(4,6)(7,9) ]) ] gap> List(Mp,IdGroup); # there are 3, but they are isomorphic [ [ 32, 43 ], [ 32, 43 ], [ 32, 43 ] ] 5. Go back to G by taking preimages under the isomorphism to the permutation group: gap> M := PreImage(phi,Mp[1]); <group of size 32 with 5 generators> gap> GeneratorsOfGroup(M); [ ^(2,7,3,5)(6,9,8,10), ^(2,3)(5,7)(6,8)(9,10), ^(1,4)(2,10)(3,9)(5,6)(7,8), ^(1,4)(5,7)(6,10)(8,9), ^(5,7)(6,9)(8,10) ] gap> StructureDescription(M); "(C2 x D8) : C2" Hope this helps, Stefan Kohl ------------------------------------------------------------------- Dr. Stefan Kohl Current address: Universiteti "Ismail Qemali" Vlore Lagjja: Pavaresia Vlore / Albania Web: http://www.gap-system.org/DevelopersPages/StefanKohl/ ------------------------------------------------------------------- _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum