Dear GAP forum, Suppose that GAP shows (using coset enumeration algorithm) that a group $G=<F| R>$ where $F$ is a finitely generated free group and $R$ is a finite set of words in $F$ is finite. Let $w\in F$ such that the image of $w$ in $G$ is 1. How one can find (using GAP) some $r_1,...,r_m\in (R\cup R^{-1})$ and $t_1,...,t_m\in F$ such that $w=r_1^{t_1}\cdots r_m^{t_m}$? Best wishes, V.D. Mazurov
-- Victor Danilovich Mazurov Institute of Mathematics Novosibirsk 630090 Russia _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum