Dear Forum, Kirill Mackenzie asked:
[ ... ] > f:=FreeGroup(4);; > G:=f/[f.1^2,f.2^2,f.3^2,f.4^2, > (f.1*f.2)^3,(f.1*f.3)^3,(f.1*f.4)^3,(f.2*f.3)^3,(f.2*f.4)^3,(f.3*f.4)^3, > (f.1*f.2*f.1*f.3)^4,(f.1*f.2*f.1*f.4)^4, > (f.1*f.3*f.1*f.4)^4,(f.1*f.3*f.1*f.2)^4, > (f.1*f.4*f.1*f.2)^4,(f.1*f.4*f.1*f.3)^4, > (f.2*f.3*f.2*f.4)^4,(f.2*f.3*f.2*f.1)^4, > (f.2*f.4*f.2*f.1)^4,(f.2*f.4*f.2*f.3)^4, > (f.2*f.1*f.2*f.3)^4,(f.2*f.1*f.2*f.4)^4, > (f.3*f.4*f.3*f.2)^4,(f.3*f.4*f.3*f.1)^4, > (f.3*f.1*f.3*f.2)^4,(f.3*f.1*f.3*f.4)^4, > (f.3*f.2*f.3*f.1)^4,(f.3*f.2*f.3*f.4)^4, > (f.4*f.1*f.4*f.2)^4,(f.4*f.1*f.4*f.3)^4, > (f.4*f.2*f.4*f.1)^4,(f.4*f.2*f.4*f.3)^4, > (f.4*f.3*f.4*f.2)^4,(f.4*f.3*f.4*f.1)^4]; > To start I want the order of G. With `Size(G);' `Order(G);' `IsFinite(G);' > I just get several (8 or 9) iterations of > > #I Coset table calculation failed -- trying with bigger table limit > > and then > > exceeded the permitted memory (`-o' command line option) at A common strategy to decide finiteness of an fp group which is 'often' successful is to search for low-index subgroups which have the infinite cyclic group as an homomorphic image, i.e. which have 0 among their abelian invariants: gap> low := LowIndexSubgroupsFpGroup(G,20);; gap> Set(List(low,AbelianInvariants)); [ [ ], [ 0, 0, 0, 2 ], [ 0, 0, 2, 2 ], [ 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 2, 2, 2, 3 ], [ 2, 2, 2, 2, 4 ], [ 2, 2, 2, 4 ], [ 2, 2, 4 ], [ 2, 2, 8 ], [ 2, 4, 4, 4 ], [ 3 ] ] >From this you see that your group G has such subgroups, thus it is infinite. Further you can compute finite quotients of your group by letting it act by multiplication from the right on the right cosets of a subgroup. -- For example: gap> quots := List(low,H->Action(G,RightCosets(G,H),OnRight));; gap> List(quots,Size); [ 1, 120, 1920, 1920, 2432902008176640000, 1920, 1920, 1920, 2432902008176640000, 1920, 1920, 2432902008176640000, 1920, 1920, 1920, 1920, 1920, 1920, 2432902008176640000, 1920, 1920, 2432902008176640000, 1920, 1920, 1920, 1920, 120, 3840, 3840, 3840, 3840, 3840, 3840, 3840, 1920, 1920, 1920, 1920, 1920, 3840, 3840, 2432902008176640000, 3840, 3840, 3840, 3840, 3840, 120, 1920, 1920, 1920, 1920, 120, 3840, 3840, 3840, 3840, 3840, 3840, 3840, 120, 2, 120, 120, 3840, 3840, 3840, 3840, 3840, 3840, 3840, 120, 3840, 95040, 3840, 3840, 239500800, 3840, 3840, 95040, 3840, 3840, 3840, 3840, 95040, 3840, 239500800, 239500800, 3840, 95040, 3840, 95040, 3840, 239500800, 3840, 95040, 120 ] For example you see that your group has a quotient which is isomorphic to the Mathieu group M12: gap> List(Filtered(quots,IsSimple),StructureDescription); [ "C2", "M12", "A12", "M12", "M12", "A12", "A12", "M12", "M12", "A12", "M12" ] Hope this helps, Stefan Kohl --------------------------------------------------------------------------- http://www.gap-system.org/DevelopersPages/StefanKohl/ --------------------------------------------------------------------------- _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum