This is in regard to a previous question to the GAP-forum regarding the identification of grooups being returned from the Group Construction program. See below for the program used: LoadPackage("grpconst"); p:=11; q:=5; x:=ConstructAllGroups(q^3*p^2);;time; LL:=Length(x); i:=55; H:=x[i]; ccs:=ConjugacyClasses(H);; classcounts := []; eltcounts := []; for c in ccs do o := Order(Representative(c)); if not IsBound(classcounts[o]) then classcounts[o] := 0; eltcounts[o] := 0; fi; classcounts[o] := classcounts[o] + 1; eltcounts[o] := eltcounts[o] + Size(c); od; for o in [1..Length(classcounts)] do if IsBound(classcounts[o]) then Print(o," ",eltcounts[o]," ",classcounts[o],"\n"); fi; od; R:=PresentationViaCosetTable(H); S:=FpGroupPresentation(R); T:=RelatorsOfFpGroup(S); Sq:=SylowSubgroup(H,q); Rq:=PresentationViaCosetTable(Sq); Sq:=FpGroupPresentation(Rq); T3:=RelatorsOfFpGroup(Sq); IdGroup(Sq); The returned presentations here are gap> T:=RelatorsOfFpGroup(S); [ f2*f3*f2^-1*f3^-1, f2*f4*f2^-1*f4^-1, f3*f4*f3^-1*f4^-1, f1*f5*f1^-1*f5^-1, f2*f5*f2^-1*f5^-1, f3*f5*f3^-1*f5^-1, f4*f5*f4^-1*f5^-1, f5*f1*f2*f1^-1*f2^-1, f1^5, f1^-1*f3^3*f1*f3^-1, f1^-1*f4^3*f1*f4^-1, f1*f3^4*f1^-1*f3^-1, f1*f4^4*f1^-1*f4^-1, f1*f2^2*f1^-1*f2^3 ] gap> Sq:=SylowSubgroup(H,q); Group([ f1, f2, f5 ]) gap> Rq:=PresentationViaCosetTable(Sq); <presentation with 3 gens and 5 rels of total length 25> gap> Sq:=FpGroupPresentation(Rq); <fp group on the generators [ f1, f2, f3 ]> gap> T3:=RelatorsOfFpGroup(Sq); [ f1*f3*f1^-1*f3^-1, f2*f3*f2^-1*f3^-1, f3*f1*f2*f1^-1*f2^-1, f1^5, f1*f2^2*f1^-1*f2^3 ] gap> IdGroup(Sq); [ 125, 4 ] The question is to relate groups obtained from the Group Construction program as above to a presentation of the form: T_1^11=T_2^11=(T_1,T_2) = A^25=B^5=A^b*a^_6= T_1^A*T_1^a=T_2^A*T_2^b=T_1^B*T_1^c=T_2^B*T_2^d=1; In this case I believe that a and b are both -1 ie the order 11 group generators commute with the generator A, and the other 5-group generator does not commute with the T's. Question how to get the parameters c and d. Note there are several cases where the order structure of the groups generated by Grp Const program are (or appear to be) the same as well as their automorphism groups. Hence how to assign the "constants a,b,c, and d to these groups obtained from the Grp Const output. In other words how to assign presentations of the above form (T_1,..B) to groups in the Grp Const output. Note the IsomorphismGroups(X,Y) may not work as the size of these groups automorphism groups are quite large. Suggestions ??? Walter Becker _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum