Hi Serkan, > I would like to know how we can compute the maximal subgroups of mathieu > group of degree 23 in gap.
The maximal subgroups of M23 are stored in the AtlasRep package. The group M23 has 7 maximal subgroups. For example, the following code can be used to obtain the 4th maximal subgroup of M23 (which is isomorphic to A8, see for example the ATLAS of finite groups: http://brauer.maths.qmul.ac.uk/Atlas/v3/lookup?target=m23). gap> LoadPackage("atlasrep"); gap> N := 4; gap> gr := Group(AtlasGenerators("M23", 1, N).generators); Group([ (1,4)(5,11)(6,18)(7,10)(13,22)(14,20)(15,21)(16,19), (1,15,17,18)(2,9,22,3)(4,8,23,13)(5,7)(6,12)(11,19,14,16) ]) gap> Size(gr); 20160 See the documentation of the AtlasRep package for more information on the function AtlasGenerators. Best regards, Leandro _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum