Dear
Am 10.04.2012 um 12:11 schrieb fvanh...@cage.ugent.be: > Dear members of the GAP forum, > > I would like to consider a big Galois field as a vector space over its prime > subfield. > Hence I started with: > > gf:=GF(3^6); > w:=PrimitiveElement(gf); > W:=AsVectorSpace(PrimeField(gf),gf); > > Now I would for instance like to compute the dimension of the subspace (over > GF(3)) spanned by {w,w^5,w^6}. > (Note that I am actually not expecting that that subset is linearly > independent) > > But if I understand > http://www.gap-system.org/Manuals/doc/htm/ref/CHAP059.htm#SECT001 > correctly, then the only way to construct subspaces is by expressing vectors > in terms of coordinates using some basis. > > Is this correct? Actually, no, that's not correct. To stick with your example, the following code works gap> gf:=GF(3^6); GF(3^6) gap> w:=PrimitiveElement(gf); Z(3^6) gap> W:=AsVectorSpace(PrimeField(gf),gf); GF(3^6) gap> Dimension(Subspace(W, [w,w^5,w^6])); 3 So, the three "vectors" are linearly independent. You can also ask for "coordinates", if you prefer, though. E.g. the standard basis GAP will use for this vector space is 1=w^0 up to w^5: gap> AsList(Basis(W)); [ Z(3)^0, Z(3^6), Z(3^6)^2, Z(3^6)^3, Z(3^6)^4, Z(3^6)^5 ] Decomposing w^5 with respect to this basis: gap> Coefficients(Basis(W), w^6); [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] We verify this: gap> w^0 + w - w^2 + w^4 = w^6; true Hope that helps, Max > > Thanks in advance, > Kind regards, > Frédéric > > > > > > ---------------------------------------------------------------- > This message was sent using IMP, the Internet Messaging Program. > > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum > _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum