Dear Forum, Linda Cupples asked:
> I've been trying to find a way to determine the elements in each of the > conjugacy classes that is given by gap, > > My code is pretty much, > > F:=FreeGroup("a","b"); > <free group on the generators [ a, b ]> > a:=F.1;;b:=F.2;; > G:=F/[a^4,b^4,(a*b)^2,(a^3*b)^2]; > > ConjugacyClasses(G); > [ <identity ...>^G, a^G, b^G, a^2*b^2^G, a^2^G, a*b^G, a^3^G, a^2*b^G, > b^2^G, a^3*b^G ] > > List(ConjugacyClasses(G), Size); > [ 1, 2, 2, 1, 1, 2, 2, 2, 1, 2 ] > > Is it possible to retrive the actual elements in each of the conjugacy > classes of size 2? Instead of the output "a^G", a and its conjugate? The answer is yes. -- Just apply `AsList' to the conjugacy classes: gap> List(ConjugacyClasses(G),AsList); [ [ <identity ...> ], [ a, b^-1*a*b ], [ b, a^-1*b*a ], [ a^2*b^2 ], [ a^2 ], [ a*b, b*a ], [ a^3, b^-1*a^3*b ], [ a^2*b, a*b*a ], [ b^2 ], [ a^3*b, a^2*b*a ] ] Hope this helps, Stefan Kohl _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum