Moshtagh: The presentation for the group Z_9 semi Z_3 is a^9=b^3=a^b*a^-4=1; More generally this class of groups [ C_(p^2}] Semi C_p is a^(p^2}=b^p=a^b*a^(-p-1) =1 Is this sufficient or did you need a permutation representation? Walter Becker
> Date: Sat, 9 Jun 2012 15:50:19 +0430 > From: hs.mosht...@gmail.com > To: fo...@gap-system.org > Subject: Re: [GAP Forum] semidirect products > > Dear Forum, > > How to construct a group semidirect product of $Z_3$ and $Z_9$ where $Z_i$ > is a cyclic group of order $i$. > I nead the permutation representation of this group. > > Best, > Moshtagh > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum