Dear Forum, Zeinab Foruzanfar asked:
> I'm trying to write a Gap-program for (Z2ÃZ2ÃZ2ÃZ2)âÏA5. Please Help > me. The easiest is of course to construct the direct product, but I guess you rather want one of the perfect groups of the structure you give. To construct them, you can do the following: 1. Define the normal subgroup: gap> N := Group((1,2),(3,4),(5,6),(7,8));; 2. Compute the automorphism group: gap> A := AutomorphismGroup(N); <group with 4 generators> gap> Size(A); 20160 3. Embed A5: gap> phi := IsomorphismPermGroup(A);; gap> Ap := Image(phi); Group([ (4,8)(5,9)(6,10)(7,11), (1,8,4,2)(3,9,12,6)(5,10)(7,11,13,14), (8,12)(9,13)(10,14)(11,15), () ]) gap> A5 := IsomorphicSubgroups(Ap,AlternatingGroup(5)); [ [ (1,4,5,3,2), (1,5)(2,4) ] -> [ (1,2,5,9,15)(3,7,12,6,14)(4,11,10,8,13), (1,5)(2,15)(3,10)(6,11)(7,14)(8,12) ], [ (1,4,5,3,2), (1,5)(2,4) ] -> [ (1,2,11,12,4)(3,9,7,8,5)(6,10,14,15,13), (1,5)(2,15)(3,10)(6,11)(7,14)(8,12) ] ] --> Up to conjugacy there are 2 embeddings of A5 into Aut(N). 4. Construct the corresponding semidirect products: gap> G := SemidirectProduct(PreImage(phi,Image(A5[1])),N); <permutation group with 6 generators> gap> Size(G); 960 gap> IsPerfect(G); true gap> IdGroup(G); [ 960, 11358 ] gap> H := SemidirectProduct(PreImage(phi,Image(A5[2])),N); <permutation group with 6 generators> gap> Size(H); 960 gap> IsPerfect(H); true gap> IdGroup(H); [ 960, 11357 ] 5. These are all such perfect groups: gap> NrPerfectGroups(960); 2 Hope this helps, Stefan _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum