Hi I am not able to understand if the following is actually a well defined homomorphism!
*G:=DihedralGroup(20);* <pc group of size 20 with 3 generators> *b:=G.1*G.2;* f1*f2 *b^2;* <identity> of ... *phi:=IrreducibleRepresentations(G,GF(8));* [ Pcgs([ f1, f2, f3 ]) -> [ [ [ Z(2)^0 ] ], [ [ Z(2)^0 ] ], [ [ Z(2)^0 ] ] ], Pcgs([ f1, f2, f3 ]) -> [ [ [ Z(2)^0, 0*Z(2), Z(2^3), Z(2)^0 ], [ 0*Z(2), Z(2)^0, Z(2^3)^6, Z(2^3)^3 ], [ 0*Z(2), 0*Z(2), Z(2^3), Z(2^3)^3 ], [ 0*Z(2), 0*Z(2), Z(2^3)^2, Z(2)^0 ] ], [ [ Z(2^3)^6, Z(2^3)^5, Z(2^3)^6, Z(2^3) ], [ Z(2^3)^4, Z(2^3), Z(2)^0, Z(2^3)^5 ], [ Z(2^3)^2, Z(2^3)^6, Z(2^3)^3, Z(2^3)^4 ], [ Z(2^3)^5, Z(2)^0, Z(2^3)^3, Z(2^3)^6 ] ], [ [ Z(2^3)^2, Z(2^3)^4, Z(2^3), 0*Z(2) ], [ Z(2^3)^3, Z(2^3), 0*Z(2), Z(2^3) ], [ Z(2^3), Z(2^3), Z(2^3)^3, Z(2^3)^5 ], [ Z(2)^0, 0*Z(2), Z(2^3)^4, Z(2^3)^2 ] ] ] ] *phi2:=phi[2];;* * * *Image(phi2,b)^2;* [ [ Z(2^3)^6, Z(2^3)^3, 0*Z(2), 0*Z(2) ], [ Z(2^3)^2, Z(2^3)^4, 0*Z(2), 0*Z(2) ], [ Z(2^3)^4, Z(2^3)^3, Z(2^3), Z(2^3)^6 ], [ Z(2^3)^2, Z(2^3)^6, Z(2^3)^5, Z(2^3)^5 ] ] *which is not an identity matrix..* * * *Please let me know if I am going wrong....* * * *Thanks!* _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum