On Thu, February 7, 2013 3:34 pm, Stefan Witzel wrote: > can anyone explain the following behavior to me (saying that PSL(3,2) has to > distinct > conjugacy classes that are conjugate)? > > vec1:=[1,0,0]*Z(2)^0;; > sl:=SL(3,2);; > orb:=Orbit(sl,vec1,OnLines);; > act:=ActionHomomorphism(sl,orb,OnLines);; > psl:=Image(act);; > ConjugacyClasses(psl); > > [ ()^G, (3,4)(6,7)^G, (2,3,5,4)(6,7)^G, (2,3,6)(4,7,5)^G, (1,2,3,4,7,5,6)^G, > (1,2,3,5,6,7,4)^G ] > > g:=Representative(ConjugacyClasses(psl)[5]);; > h:=Representative(ConjugacyClasses(psl)[6]);; > c:=(2,6,4)(3,5,7);; > c*g^(-1)*c^(-1)=h; > > true > > IsSubgroup(psl,Group(c)); > > true
The point is that the 6th conjugacy class in the list consists of the inverses of the elements of the 5th conjugacy class (in particular the elements in these classes are not conjugate to their inverses): gap> ccl := ConjugacyClasses(psl); [ ()^G, (3,4)(6,7)^G, (2,3,5,4)(6,7)^G, (2,3,6)(4,7,5)^G, (1,2,3,4,7,5,6)^G, (1,2,3,5,6,7,4)^G ] gap> Set(AsList(ccl[6])) = Set(List(AsList(ccl[5]),g->g^-1)); true gap> IsConjugate(psl,Representative(ccl[5]),Representative(ccl[6])); false gap> IsConjugate(psl,Representative(ccl[5]),Representative(ccl[6])^-1); true Hope this helps, Stefan Kohl _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum