There's probably a nicer way, but you could do gap> g:=SymmetricGroup(4); gap> ccsg:=ConjugacyClassesSubgroups(g); gap> V:=Representative(ccsg[5]); gap> StructureDescription(V); "C2 x C2"
Cheers, William -- William DeMeo Department of Mathematics University of South Carolina http://williamdemeo.wordpress.com mobile:808-298-4874 office:803-777-7510 On Tue, Mar 19, 2013 at 1:13 PM, Mohammad Reza Sorouhesh <msorouh...@gmail.com> wrote: > Dear forum, > > May I ask you how can I have the subgroup of S_4 which is isomorphic with > Z_2 X Z_2. I know that the Cayley's Theorem guaranties this event. > > Best Wishes > > M.R.Sorouhesh > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum