Dear Fergal, if you have a p-group and a field of p elements, then NormalizedUnitGroup and PcNormalizedUnitGroup from the LAGUNA package will help:
gap> KG := GroupRing( GF( 2 ), DihedralGroup( 16 ) ); <algebra-with-one over GF(2), with 4 generators> gap> V := NormalizedUnitGroup( KG ); <group of size 32768 with 15 generators> gap> u := GeneratorsOfGroup( V )[4]; (Z(2)^0)*f1+(Z(2)^0)*f2+(Z(2)^0)*f1*f2 gap> W := PcNormalizedUnitGroup( KG ); <pc group of size 32768 with 15 generators> gap> w := GeneratorsOfGroup( W )[4]; f4 For other cases I'm afraid that straightforward calculations will allow to deal only with small examples. Best wishes, Alexander On 12 Sep 2013, at 11:58, Fergal Gallagher <gallagher.fer...@itsligo.ie> wrote: > Hi guys, > > I want to check the structure of the unit groups of certain finite group > algebras. > > I am new to GAP and have tried the manual but it is very complicated even for > the most basic task. ie. find the unit group of F2^2C2xC4 for example. > > Any help? > > Fergal Gallagher > > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum