On Thu, September 19, 2013 8:05 pm, yassine Guerboussa wrote: > I will be pleased if one can help in writing a program such that, > For a group $G$ (usually, a small group in GAP library), it computes the > subgroup > generatedby the elements that are not left n-Engel, for some fixed n. > Recall that an element $a$ in $G$ is left n-Engel if it satisfies the > identity$[x,a,...,a]=1$, where $a$ occurs $n$ times (the commutator is left > normed).
I think the following should serve the purpose, as long as your groups are small: SubgroupGeneratedByElementsWhichAreNotLeftnEngel := function ( G, n ) local elms, gens, H; elms := AsList(G); gens := Filtered(elms, a->ForAny(elms,x->not IsOne(LeftNormedComm( Concatenation([x],ListWithIdenticalEntries(n,a)))))); H := Group(gens,One(G)); return H; end; Hope this helps, Stefan Kohl ----------------------------------------------------------------------------- http://www.gap-system.org/DevelopersPages/StefanKohl/ ----------------------------------------------------------------------------- _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum