Dear Forum, I am suspecting that GAP's function for finding composition factors of a MeatAxe module could be producing an incorrect answer in the following example which counts the multiplicities of composition factors of the regular module for A_5 over its splitting field GF(4). According to the theory, A_5 has a unique irreducible module of defect 0 which has dimension 4 and therefore must occur with multiplicity 4, but the function returns 3.
A:=AlternatingGroup(5); G:=Action(A,A); gg:=GeneratorsOfGroup(GG); reg:=List(gg,g->PermutationMat(g,60,GF(4))); M:=GModuleByMats(reg,GF(4)); com:=MTX.CollectedFactors(M);; List(com,t->[MTX.Dimension(t[1]),t[2]]); # [ [ 1, 16 ], [ 2, 8 ], [ 2, 8 ], [ 4, 3 ] ] Here is a similar calculation in Magma which is more in line with the theory. A:=AlternatingGroup(5); _,G:=CosetAction(A,sub<A|>); M:=PermutationModule(G,GF(4)); ConstituentsWithMultiplicities(M); [ <GModule of dimension 1 over GF(2^2), 12>, <GModule of dimension 2 over GF(2^2), 8>, <GModule of dimension 2 over GF(2^2), 8>, <GModule of dimension 4 over GF(2^2), 4> ] [ 4, 1, 2, 3, 1, 2, 1, 3, 4, 1, 3, 2, 1, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 1, 3, 3, 4, 1, 2, 1, 3 ] Anvita _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum