Dear Ha T. Lam,

I'm doing some computations with Heisenberg group and I'm using the method
HeisenbergPcpGroup(n) from the Polycyclic package. According to the manual,
I should get a Heisenberg group of 2n generators with Hirsch length 3n. I
do:

gap> HeisenbergPcpGroup(3);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0 ]

The Hirsch length here is 7, not 9. Is this a mistake in the manual? Can
you give me some reference of how these groups are generated by this
package?

It is indeed a mistake in the manual. The function HeisenbergPcpGroup(m)
returns the Heisenberg group on 2m generators; this has Hirsch length 2m+1. To see some more details on how these groups are generated, you can do

gap> Print(HeisenbergPcpGroup);
function ( m )
    local  FLT, i;
    FLT := FromTheLeftCollector( 2 * m + 1 );
    for i  in [ 1 .. m ]  do
        SetConjugate( FLT, m + i, i, [ m + i, 1, 2 * m + 1, 1 ] );
    od;
    UpdatePolycyclicCollector( FLT );
    return PcpGroupByCollectorNC( FLT );
end

Thus HeisenbergPcpGroup(m) returns a group on 2m+1 polycyclic generators
g_1, ..., g_{2m+1} with conjugate relations

  g_{m+i}^g_i = g_{m+i} g_{2m+1} for 1 <= i <= m

Best wishes,

Bettina


_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum

Reply via email to