The question here is how to display the mapping (homomorphism) h:G---->G/N[i]
on the generators of the group G. For a specific case try this: G is Ho,(C_4 X C_2) this is group number 259 in the Hall-Senior Tables and group number 138 in the Small group Library. A specific presentation here is f:=FreeGroup("a", "b", "c" ); g:=f/[f.1^2, f.2^2, f.3^2, (f.1^-1*f.2^-1*f.1*f.2)^2, (f.1^-1*f.3^-1*f.1*f.3)^2, (f.2^-1*f.3^-1*f.2*f.3), (f.1^-1*f.2^-1*f.1*f.2)^-1*f.3^-1*(f.1^-1*f.2^-1*f.1*f.2)*f.3* ((f.1^-1*f.3^-1*f.1*f.3)^-1*f.2^-1*(f.1^-1*f.3^-1*f.1*f.3)*f.2)^-1 ]; The subgroups of most interest here are (C_2 X C_2)wr C_2 of order 32 of which there are 3 cases. Most specivically what are the images h(f.1), h(f.2) and h(f.3). Thanks Walter Becker _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum