Thanks for the fix! It seems to work now.

Benjamin

Am 29.01.2014 17:30, schrieb Max Horn:
Dear Benjamin,

On 29.01.2014, at 16:27, Benjamin Sambale <benjamin.samb...@gmail.com> wrote:

Dear GAP users,

I'm using GAP 4.7.2 and just ran into the following strange behavior:

G:=AbelianGroup([4,4,4]);;
A:=AutomorphismGroup(G);;
x:=First(A,a->Order(a)<>Size(Group(a)));
[ f1*f2*f3, f5, f1*f2*f6 ] -> [ f1, f1*f2*f4*f5*f6, f2*f3*f6 ]

I thought that the order of an element is the same as the size of the generated 
group?? Indeed:

x^Order(x);
Pcgs([ f1, f2, f3, f4, f5, f6 ]) -> [ f1, f2, f3, f4, f4*f5*f6, f6 ]

Any ideas?
This is a bug in GAP :-(. It will be fixed in the next GAP release. In the 
meantime, you can paste this code into your GAP session to fix the issue:

InstallMethod(Order,"for automorphisms",true,[IsGroupHomomorphism],0,
function(hom)
local map,phi,o,lo,i,start,img;
   o:=1;
   phi:=hom;
   map:=MappingGeneratorsImages(phi);
   i:=1;
   while i <= Length(map[1]) do
     lo:=1;
     start:=map[1][i];
     img:=map[2][i];
     while img<>start do
       img:=ImagesRepresentative(phi,img);
       lo:=lo+1;
       # do the bijectivity test only if high local order, then it does not
       # matter
       if lo=1000 and not IsBijective(hom) then
         Error("<hom> must be bijective");
       fi;
     od;
     if lo>1 then
       o:=o*lo;
       if i<Length(map[1]) then
         phi:=phi^lo;
         map:=MappingGeneratorsImages(phi);
         i:=0;
       fi;
     fi;
     i:=i+1;
   od;
   return o;
end);


Thanks for the report,
Max


_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum

Reply via email to